168,477 research outputs found
Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays
The lifetime differences of bottom hadrons are known to be properly explained
within the framework of heavy quark effective field theory(HQEFT) of QCD via
the inverse expansion of the dressed heavy quark mass. In general, the spectrum
around the endpoint region is not well behaved due to the invalidity of
expansion near the endpoint. The curve fitting method is adopted to treat the
endpoint behavior. It turns out that the endpoint effects are truly small and
the explanation on the lifetime differences in the HQEFT of QCD is then well
justified. The inclusion of the endpoint effects makes the prediction on the
lifetime differences and the extraction on the CKM matrix element
more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio
Direct and secondary nuclear excitation with x-ray free-electron lasers
The direct and secondary nuclear excitation produced by an x-ray free
electron laser when interacting with a solid-state nuclear target is
investigated theoretically. When driven at the resonance energy, the x-ray free
electron laser can produce direct photoexcitation. However, the dominant
process in that interaction is the photoelectric effect producing a cold and
very dense plasma in which also secondary processes such as nuclear excitation
by electron capture may occur. We develop a realistic theoretical model to
quantify the temporal dynamics of the plasma and the magnitude of the secondary
excitation therein. Numerical results show that depending on the nuclear
transition energy and the temperature and charge states reached in the plasma,
secondary nuclear excitation by electron capture may dominate the direct
photoexcitation by several orders of magnitude, as it is the case for the 4.8
keV transition from the isomeric state of Mo, or it can be negligible,
as it is the case for the 14.4 keV M\"ossbauer transition in
. These findings are most relevant for future nuclear quantum
optics experiments at x-ray free electron laser facilities.Comment: 17 pages, 7 figures; minor corrections made; accepted by Physics of
Plasma
A More Precise Extraction of |V_{cb}| in HQEFT of QCD
The more precise extraction for the CKM matrix element |V_{cb}| in the heavy
quark effective field theory (HQEFT) of QCD is studied from both exclusive and
inclusive semileptonic B decays. The values of relevant nonperturbative
parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD.
Using the most recent experimental data for B decay rates, |V_{cb}| is updated
to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l
\nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l
\nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from
inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure
Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions
We calculate the internal energy of the Potts model on the triangular lattice
with two- and three-body interactions at the transition point satisfying
certain conditions for coupling constants. The method is a duality
transformation. Therefore we have to make assumptions on uniqueness of the
transition point and that the transition is of second order. These assumptions
have been verified to hold by numerical simulations for q=2, 3 and 4, and our
results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure
Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory
We have constructed a heavy baryon effective field theory with photon as an
external field in accordance with the symmetry requirements similar to the
heavy quark effective field theory. By treating the heavy baryon and
anti-baryon equally on the same footing in the effective field theory, we have
calculated the spin polarisabilities of the nucleon at
third order and at fourth-order of the spin-dependent Compton scattering. At
leading order (LO), our results agree with the corresponding results of the
heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the
results show a large correction to the ones in the heavy baryon chiral
perturbation theory due to baryon-antibaryon coupling terms. The low energy
theorem is satisfied both at LO and at NLO. The contributions arising from the
heavy baryon-antibaryon vertex were found to be significant and the results of
the polarisabilities obtained from our theory is much closer to the
experimental data.Comment: 21pages, title changed, minimal correction
Charmless decays B->pipi, piK and KK in broken SU(3)symmetry
Charmless B decay modes and aresystematically
investigated with and without flavor SU(3) symmetry. Independent analyses on
and modes both favor a large ratio between color-suppressed
tree () and tree ( diagram, which suggests that they are more likely to
originate from long distance effects. The sizes of QCD penguin diagrams
extracted individually from , and modes are found to
follow a pattern of SU(3) breaking in agreement with the naive factorization
estimates. Global fits to these modes are done under various scenarios of
SU(3)relations. The results show good determinations of weak phase in
consistency with the Standard Model (SM), but a large electro-weak penguin
(P_{\tmop{EW}}) relative to with a large relative strong phase are
favored, which requires an big enhancement of color suppressed electro-weak
penguin (P_{\tmop{EW}}^C) compatible in size but destructively interfering
with P_{\tmop{EW}} within the SM, or implies new physics. Possibility of
sizable contributions from nonfactorizable diagrams such as -exchange (),
annihilation() and penguin-annihilation diagrams() are investigated.
The implications to the branching ratios and CP violations in modes are
discussed.Comment: 27 pages, 9 figures, reference added, to appear in Phy.Rev.
- …