368 research outputs found

    Decoherence-protected memory for a single-photon qubit

    Full text link
    The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient light-matter interface remains an outstanding challenge. In fact, the coherence times of memories for photonic qubits are currently limited to a few milliseconds. Here we report on a qubit memory based on a single atom coupled to a high-finesse optical resonator. By mapping and remapping the qubit between a basis used for light-matter interfacing and a basis which is less susceptible to decoherence, a coherence time exceeding 100 ms has been measured with a time-independant storage-and-retrieval efficiency of 22%. This demonstrates the first photonic qubit memory with a coherence time that exceeds the lower bound needed for teleporting qubits in a global quantum internet.Comment: 3 pages, 4 figure

    Polarization-controlled single photons

    Get PDF
    Vacuum-stimulated Raman transitions are driven between two magnetic substates of a rubidium-87 atom strongly coupled to an optical cavity. A magnetic field lifts the degeneracy of these states, and the atom is alternately exposed to laser pulses of two different frequencies. This produces a stream of single photons with alternating circular polarization in a predetermined spatio-temporal mode. MHz repetition rates are possible as no recycling of the atom between photon generations is required. Photon indistinguishability is tested by time-resolved two-photon interference.Comment: 4 pages, 3 figure

    Continuous loading of an electrostatic trap for polar molecules

    Full text link
    A continuously operated electrostatic trap for polar molecules is demonstrated. The trap has a volume of ~0.6 cm^3 and holds molecules with a positive Stark shift. With deuterated ammonia from a quadrupole velocity filter, a trap density of ~10^8/cm^3 is achieved with an average lifetime of 130 ms and a motional temperature of ~300 mK. The trap offers good starting conditions for high-precision measurements, and can be used as a first stage in cooling schemes for molecules and as a "reaction vessel" in cold chemistry.Comment: 4 pages, 3 figures v2: several small improvements, new intr

    Continuous Centrifuge Decelerator for Polar Molecules

    Full text link
    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3_3F, CF3_3H, and CF3_3CCH, with input velocities of up to 200ms1200\,\rm{m\,s^{-1}} to obtain beams with velocities below 15ms115\,\rm{m\,s^{-1}} and intensities of several 109mm2s110^9\,\rm{mm^{-2}\,s^{-1}}. The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.Comment: 5 pages, 4 figures; version accepted for publication in PR

    Generation of Superposition Spin States in an Atomic Ensemble

    Full text link
    A method for generating a mesoscopic superposition state of the collective spin variable of a gas of atoms is proposed. The state consists of a superposition of the atomic spins pointing in two slightly different directions. It is obtained by using off resonant light to carry out Quantum Non Demolition Measurements of the spins. The relevant experimental conditions, which require very dense atomic samples, can be realized with presently available techniques. Long-lived atomic superposition states may become useful as an off-line resource for quantum computing with otherwise linear operations.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Counter-Intuitive Vacuum-Stimulated Raman Scattering

    Get PDF
    Vacuum-stimulated Raman scattering in strongly coupled atom-cavity systems allows one to generate free-running single photon pulses on demand. Most properties of the emitted photons are well defined, provided spontaneous emission processes do not contribute. Therefore, electronic excitation of the atom must not occur, which is assured for a system adiabatically following a dark state during the photon-generation process. We experimentally investigate the conditions that must be met for adiabatic following in a time-of-flight driven system, with atoms passing through a cavity and a pump beam oriented transverse to the cavity axis. From our results, we infer the optimal intensity and relative pump-beam position with respect to the cavity axis.Comment: 4 pages, 4 figure

    Rigidity of escaping dynamics for transcendental entire functions

    Full text link
    We prove an analog of Boettcher's theorem for transcendental entire functions in the Eremenko-Lyubich class B. More precisely, let f and g be entire functions with bounded sets of singular values and suppose that f and g belong to the same parameter space (i.e., are *quasiconformally equivalent* in the sense of Eremenko and Lyubich). Then f and g are conjugate when restricted to the set of points which remain in some sufficiently small neighborhood of infinity under iteration. Furthermore, this conjugacy extends to a quasiconformal self-map of the plane. We also prove that this conjugacy is essentially unique. In particular, we show that an Eremenko-Lyubich class function f has no invariant line fields on its escaping set. Finally, we show that any two hyperbolic Eremenko-Lyubich class functions f and g which belong to the same parameter space are conjugate on their sets of escaping points.Comment: 28 pages; 2 figures. Final version (October 2008). Various modificiations were made, including the introduction of Proposition 3.6, which was not formally stated previously, and the inclusion of a new figure. No major changes otherwis

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

    Full text link
    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μ\mus exceeds the photon duration by two orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information
    corecore