4 research outputs found

    Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries

    No full text
    Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone posttranslational modification (‘PTM’) signatures remains a daunting task in the epigenetics field. Here, we introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semi-synthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how pre-existing PTMs, alone or synergistically, affect further PTM deposition via crosstalk mechanisms. We anticipate that the high-throughput and -sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin

    Possible natural fluid pathways from gravity pseudo-tomography in the geothermal fields of Northern Alsace (Upper Rhine Graben)

    Get PDF
    Background This study aims on investigating the regional flow field of the Soultz and adjacent geothermal fields located on the western side of the central Upper Rhine Graben and thus to provide insight into the origin of the 70% of the geothermal fluid coming from the regional inflow in the deep reservoir of the Soultz site. In an integrative approach, we consolidate conceptual models on fluid flow in the central Upper Rhine Graben. Methods Based on a 3D geological model and a new 3D temperature interpolation, we tackle the relation between tectonic structures and the occurrence of advection/convection along favourably oriented fault zones. Using sequential Butterworth filters, we study the distribution of negative residual anomalies in a pseudo-tomography down to a depth of about 6 to 8 km. Results We derived N-S-striking V-shaped negative anomalies that are consistent with the orientation of fault zones revealing major temperature anomalies to their east. Conclusions Following the concept of negative anomalies revealing zones of increased fracture porosity, and in agreement with fluid-chemistry, our findings suggest infiltration of meteoric water through the graben boundary fault and along preferential flow pathways that merge at intermediate depth. Up-flow of thermal water mixed most likely with brine from the deeper eastern part of the graben occurs along W-dipping typically rather steep structures
    corecore