253,566 research outputs found
Nflation: multi-field inflationary dynamics and perturbations
We carry out numerical investigations of the dynamics and perturbations in
the Nflation model of Dimopoulos et al. (2005). This model features large
numbers of scalar fields with different masses, which can cooperate to drive
inflation according to the assisted inflation mechanism. We extend previous
work to include random initial conditions for the scalar fields, and explore
the predictions for density perturbations and the tensor-to-scalar ratio. The
tensor-to-scalar ratio depends only on the number of e-foldings and is
independent of the number of fields, their masses, and their initial
conditions. It therefore always has the same value as for a single massive
field. By contrast, the scalar spectral index has significant dependence on
model parameters. While normally multi-field inflation models make predictions
for observable quantities which depend also on the unknown field initial
conditions, we find evidence of a `thermodynamic' regime whereby the predicted
spectral index becomes independent of initial conditions if there are enough
fields. Only in parts of parameter space where the mass spectrum of the fields
is extremely densely packed is the model capable of satisfying the tight
observational constraints from WMAP3 observations.Comment: 6 pages RevTeX4, 4 figures included. Updated to match PRD accepted
version. Analysis and conclusions unchanged. New references, especially
astro-ph/0510441 which was first to give the general r=8/N resul
N-flation: Non-Gaussianity in the horizon-crossing approximation
We analyze the cosmic non-gaussianity produced in inflation models with multiple uncoupled fields with monomial potentials, such as Nflation. Using the horizon-crossing approximation to compute the non-gaussianity, we show that when each field has the same form of potential, the prediction is independent the number of fields, their initial conditions, and the spectrum of masses/couplings. It depends only on the number of e-foldings after the horizon crossing of observable perturbations. We also provide a further generalization to the case where the fields can have monomial potentials with different powers. Unless the horizon-crossing approximation is substantially violated, the predicted non-gaussianity is too small to ever be observed
Nflation: observable predictions from the random matrix mass spectrum
We carry out numerical investigations of the perturbations in Nflation models
where the mass spectrum is generated by random matrix theory. The
tensor-to-scalar ratio and non-gaussianity are already known to take the
single-field values, and so the density perturbation spectral index is the main
parameter of interest. We study several types of random field initial
conditions, and compute the spectral index as a function of mass spectrum
parameters. Comparison with microwave anisotropy data from the Wilkinson
Microwave Anisotropy Probe shows that the model is currently viable in the
majority of its parameter space.Comment: 5 pages RevTeX with 4 figures. Minor corrections to match version to
appear in Physical Review
Dynamics of assisted quintessence
We explore the dynamics of assisted quintessence, where more than one scalar field is present with the same potential. For potentials with tracking solutions, the fields naturally approach the same values—in the context of inflation this leads to the assisted inflation phenomenon where several fields can cooperate to drive a period of inflation though none is able to individually. For exponential potentials, we study the fixed points and their stability confirming results already in the literature, and then carry out a numerical analysis to show how assisted quintessence is realized. For inverse power-law potentials, we find by contrast that there is no assisted behavior—indeed those are the unique (monotonic) potentials where several fields together behave just as a single field in the same potential. More generally, we provide an algorithm for generating a single-field potential giving equivalent dynamics to multifield assisted quintessence
Coupled oscillators and Feynman's three papers
According to Richard Feynman, the adventure of our science of physics is a
perpetual attempt to recognize that the different aspects of nature are really
different aspects of the same thing. It is therefore interesting to combine
some, if not all, of Feynman's papers into one. The first of his three papers
is on the ``rest of the universe'' contained in his 1972 book on statistical
mechanics. The second idea is Feynman's parton picture which he presented in
1969 at the Stony Brook conference on high-energy physics. The third idea is
contained in the 1971 paper he published with his students, where they show
that the hadronic spectra on Regge trajectories are manifestations of
harmonic-oscillator degeneracies. In this report, we formulate these three
ideas using the mathematics of two coupled oscillators. It is shown that the
idea of entanglement is contained in his rest of the universe, and can be
extended to a space-time entanglement. It is shown also that his parton model
and the static quark model can be combined into one Lorentz-covariant entity.
Furthermore, Einstein's special relativity, based on the Lorentz group, can
also be formulated within the mathematical framework of two coupled
oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman
Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction
Containerless preparation of advanced optical glasses: Experiment 77F095
Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment
Exact Rolling Tachyon in Noncommutative Field Theory
We study the exact rolling tachyon solutions in DBI type noncommutative field
theory with a constant open string metric and noncommutative parameter on an
unstable D-brane. Functional shapes of the obtained solutions span all
possible homogeneous rolling tachyon configurations; that is, they are
hyperbolic-cosine, hyperbolic-sine, and exponential under runaway NC
tachyon potential. Even if general DBI type NC electric field is turned on,
only a constant electric field satisfies the equations of motion, and again,
exact rolling tachyon solutions are obtained.Comment: 13 pages, minor correction
Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks
In this review we summarize our recent efforts in trying to understand the
role of heterogeneity in cancer progression by using neural networks to
characterise different aspects of the mapping from a cancer cells genotype and
environment to its phenotype. Our central premise is that cancer is an evolving
system subject to mutation and selection, and the primary conduit for these
processes to occur is the cancer cell whose behaviour is regulated on multiple
biological scales. The selection pressure is mainly driven by the
microenvironment that the tumour is growing in and this acts directly upon the
cell phenotype. In turn, the phenotype is driven by the intracellular pathways
that are regulated by the genotype. Integrating all of these processes is a
massive undertaking and requires bridging many biological scales (i.e.
genotype, pathway, phenotype and environment) that we will only scratch the
surface of in this review. We will focus on models that use neural networks as
a means of connecting these different biological scales, since they allow us to
easily create heterogeneity for selection to act upon and importantly this
heterogeneity can be implemented at different biological scales. More
specifically, we consider three different neural networks that bridge different
aspects of these scales and the dialogue with the micro-environment, (i) the
impact of the micro-environment on evolutionary dynamics, (ii) the mapping from
genotype to phenotype under drug-induced perturbations and (iii) pathway
activity in both normal and cancer cells under different micro-environmental
conditions
Institutional Herding, Business Groups, and Economic Regimes: Evidence from Japan
To gain new and important insights into institutional herding, we study Japan for the following reasons: we can examine a market that is known for its active institutional investors, we can investigate the impacts of business grouping (i.e., the keiretsu), and we can see if herding and feedback trading behaviors differ under three distinct economic regimes (i.e., a regulated period, a bubble economy, and a bear market). We argue that the culture in Japan causes institutions to have both a long-term focus and close relationships with management. Consistent with the first view, we find that herding in Japan occurs on a lower level than it does in the U.S., and that the subsequent short-run returns to herding seem to be unimportant. Consistent with the second view, we find that when herding does occur, it has a large impact on price movements, and the use of past information (feedback trading) on herding behavior seems only marginally important. Much of these findings are more pronounced for keiretsu firms. Lastly, the effects and behavior of institutional herding is dependent on the economic environment.
Statics and Dynamics of Strongly Charged Soft Matter
Soft matter materials, such as polymers, membranes, proteins, are often
electrically charged. This makes them water soluble, which is of great
importance in technological application and a prerequisite for biological
function. We discuss a few static and dynamic systems that are dominated by
charge effects. One class comprises complexation between oppositely charged
objects, for example the adsorption of charged ions or charged polymers (such
as DNA) on oppositely charged substrates of different geometry. The second
class comprises effective interactions between similarly charged objects. Here
the main theme is to understand the experimental finding that similarly and
highly charged bodies attract each other in the presence of multi-valent
counterions. This is demonstrated using field-theoretic arguments as well as
Monte-Carlo simulations for the case of two homogeneously charged bodies.
Realistic surfaces, on the other hand, are corrugated and also exhibit
modulated charge distributions, which is important for static properties such
as the counterion-density distribution, but has even more pronounced
consequences for dynamic properties such as the counterion mobility. More
pronounced dynamic effects are obtained with highly condensed charged systems
in strong electric fields. Likewise, an electrostatically collapsed highly
charged polymer is unfolded and oriented in strong electric fields. At the end
of this review, we give a very brief account of the behavior of water at planar
surfaces and demonstrate using ab-initio methods that specific interactions
between oppositely charged groups cause ion-specific effects that have recently
moved into the focus of interest.Comment: 61 pages, 31 figures, Physics Reports (2005)-in press (high quality
figures available from authors
- …