57,291 research outputs found

    The Entropy Function for the Black Holes of Nariai Class

    Full text link
    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the `Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as {\em minus} `Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes.Comment: references added, compatible with the published versio

    Inflating magnetically charged braneworlds

    Full text link
    Numerical solutions of Einstein, scalar, and gauge field equations are found for static and inflating defects in a higher-dimensional spacetime. The defects have (3+1)(3+1)-dimensional core and magnetic monopole configuration in n=3n=3 extra dimensions. For symmetry-breaking scale η\eta below the critical value ηc\eta_c, the defects are characterized by a flat worldsheet geometry and asymptotically flat extra dimensions. The critical scale ηc\eta_c is comparable to the higher-dimensional Planck scale and has some dependence on the gauge and scalar couplings. For η=ηc\eta=\eta_c, the extra dimensions degenerate into a `cigar', and for η>ηc\eta>\eta_c all static solutions are singular. The singularity can be removed if the requirement of staticity is relaxed and defect cores are allowed to inflate. The inflating solutions have de Sitter worldsheets and cigar geometry in the extra dimensions. Exact analytic solutions describing the asymptotic behavior of these inflating monopoles are found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Gravitational field of vacuumless defects

    Full text link
    It has been recently shown that topological defects can arise in symmetry breaking models where the scalar field potential V(ϕ)V(\phi) has no minima and is a monotonically decreasing function of ϕ|\phi|. Here we study the gravitational fields produced by such vacuumless defects in the cases of both global and gauge symmetry breaking. We find that a global monopole has a strongly repulsive gravitational field, and its spacetime has an event horizon similar to that in de Sitter space. A gauge monopole spacetime is essentially that of a magnetically charged black hole. The gravitational field of a global string is repulsive and that of a gauge string is attractive at small distances and repulsive at large distances. Both gauge and global string spacetimes have singularities at a finite distance from the string core.Comment: 19 pages, REVTeX, 6 Postscript figure

    Decay of spin-1/2 field around Reissner-Nordstrom black hole

    Full text link
    To find what influence the charge of the black hole QQ will bring to the evolution of the quasinormal modes, we calculate the quasinormal frequencies of the neutrino field (charge e=0e=0) perturbations and those of the massless Dirac field (e0e\neq 0) perturbations in the RN metric. The influences of QQ, ee, the momentum quantum number ll, and the mode number nn are discussed. Among the conclusions, the most important one is that, at the stage of quasinormal ringing, the larger when the black hole and the field have the same kind of charge (eQ>0eQ>0), the quasinormal modes of the massless charged Dirac field decay faster than those of the neutral ones, and when eQ<0eQ<0, the massless charged Dirac field decays slower

    Polarization of Prompt J/psi at the Tevatron

    Full text link
    The polarization of prompt J/psi at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. The contribution from radiative decays of P-wave charmonium states decreases, but does not eliminate, the transverse polarization at large transverse momentum. The angular distribution parameter alpha for leptonic decays of the J/\psi is predicted to increase from near 0 at p_T = 5 GeV to about 0.5 at p_T = 20 GeV. The prediction is consistent with measurements by the CDF Collaboration at intermediate values of p_T, but disagrees by about 3 standard deviations at the largest values of p_T measured.Comment: 4 pages, 2 figures, one reference added, accepted for publication in Phys. Rev.

    Doping - dependent superconducting gap anisotropy in the two-dimensional 10-3-8 pnictide Ca10_{10}(Pt3_3As8_8)[(Fe1x_{1-x}Ptx_{x})2_2As2_2]5_5

    Full text link
    The characteristic features of Ca10_{10}(Pt3_3As8_8)[(Fe1x_{1-x}Ptx_x)2_2As2_2]5_5 ("10-3-8") superconductor are relatively high anisotropy and a clear separation of superconductivity and structural/magnetic transitions, which allows studying the superconducting gap without complications due to the coexisting order parameters. The London penetration depth, measured in underdoped single crystals of 10-3-8 (x=x = 0.028, 0.041, 0.042, and 0.097), shows behavior remarkably similar to other Fe-based superconductors, exhibiting robust power-law, Δλ(T)=ATn\Delta \lambda(T) = A T^n. The exponent nn decreases from 2.36 (x=x = 0.097, close to optimal doping) to 1.7 (x=x = 0.028, a heavily underdoped composition), suggesting that the superconducting gap becomes more anisotropic at the dome edge. A similar trend is found in low-anisotropy superconductors based on BaFe2_2As2_2 ("122"), implying that it is an intrinsic property of superconductivity in iron pnictides, unrelated to the coexistence of magnetic order and superconductivity or the anisotropy of the normal state. Overall this doping dependence is consistent with s±s_{\pm} pairing competing with intra-band repulsion
    corecore