7,236 research outputs found

    Predictive Collision Management for Time and Risk Dependent Path Planning

    Full text link
    Autonomous agents such as self-driving cars or parcel robots need to recognize and avoid possible collisions with obstacles in order to move successfully in their environment. Humans, however, have learned to predict movements intuitively and to avoid obstacles in a forward-looking way. The task of collision avoidance can be divided into a global and a local level. Regarding the global level, we propose an approach called "Predictive Collision Management Path Planning" (PCMP). At the local level, solutions for collision avoidance are used that prevent an inevitable collision. Therefore, the aim of PCMP is to avoid unnecessary local collision scenarios using predictive collision management. PCMP is a graph-based algorithm with a focus on the time dimension consisting of three parts: (1) movement prediction, (2) integration of movement prediction into a time-dependent graph, and (3) time and risk-dependent path planning. The algorithm combines the search for a shortest path with the question: is the detour worth avoiding a possible collision scenario? We evaluate the evasion behavior in different simulation scenarios and the results show that a risk-sensitive agent can avoid 47.3% of the collision scenarios while making a detour of 1.3%. A risk-averse agent avoids up to 97.3% of the collision scenarios with a detour of 39.1%. Thus, an agent's evasive behavior can be controlled actively and risk-dependent using PCMP.Comment: Extended version of the SIGSPATIAL '20 pape

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Observation Scheduling System

    Get PDF
    Software has been designed to schedule remote sensing with the Earth Observing One spacecraft. The software attempts to satisfy as many observation requests as possible considering each against spacecraft operation constraints such as data volume, thermal, pointing maneuvers, and others. More complex constraints such as temperature are approximated to enable efficient reasoning while keeping the spacecraft within safe limits. Other constraints are checked using an external software library. For example, an attitude control library is used to determine the feasibility of maneuvering between pairs of observations. This innovation can deal with a wide range of spacecraft constraints and solve large scale scheduling problems like hundreds of observations and thousands of combinations of observation sequences

    Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique

    Get PDF
    Condition monitoring of wind turbines is progressively increasing to maintain the continuity of clean energy supply to power grids. This issue is of great importance since it prevents wind turbines from failing and overheating, as most wind turbines with doubly fed induction generators (DFIG) are overheated due to faults in generator bearings. Bearing fault detection has become a main topic targeting the optimum operation, unscheduled downtime, and maintenance cost of turbine generators. Wind turbines are equipped with condition monitoring devices. However, effective and reliable fault detection still faces significant difficulties. As the majority of health monitoring techniques are primarily focused on a single operating condition, they are unable to effectively determine the health condition of turbines, which results in unwanted downtimes. New and reliable strategies for data analysis were incorporated into this research, given the large amount and variety of data. The development of a new model of the temperature of the DFIG bearing versus wind speed to identify false alarms is the key innovation of this work. This research aims to analyze the parameters for condition monitoring of DFIG bearings using SCADA data for k-means clustering training. The variables of k are obtained by the elbow method that revealed three classes of k (k = 0, 1, and 2). Box plot visualization is used to quantify data points. The average rotation speed and average temperature measurement of the DFIG bearings are found to be primary indicators to characterize normal or irregular operating conditions. In order to evaluate the performance of the clustering model, an analysis of the assessment indices is also executed. The ultimate goal of the study is to be able to use SCADA-recorded data to provide advance warning of failures or performance issues
    • …
    corecore