536 research outputs found

    Resource availability at Taurus-Littrow

    Get PDF
    Early lunar technologies will probably use a common lunar material as ore. They will be robust to minor fluctuations in feedstock composition and will not require appreciable feedstock beneficiation such as rock grinding or mineral concentration. Technologies using unprocessed soil and indifferent to its composition will have the advantage. Nevertheless, the size and grade of the ore body must be confirmed for even the most indiscriminate process. Simple uses such as heaping unprocessed lunar soil for thermal insulation or radiation shielding onto a habitat require that we know the depth of the regolith, the size distributions of its soils, the locations of large boulders, and the ease of excavation. Costs of detailed site surveys trade against restrictions on site selection and conservative engineering design to accommodate unknown conditions of a poorly explored site. Given the above considerations, we consider briefly some abundant lunar materials, their proposed uses, and technologies for their preparation, with particular attention to the Taurus-Littrow site

    Lunar oxygen and metal for use in near-Earth space: Magma electrolysis

    Get PDF
    Because it is energetically easier to get material from the Moon to Earth orbit than from the Earth itself, the Moon is a potentially valuable source of materials for use in space. The unique conditions on the Moon, such as vacuum, absence of many reagents common on the Earth, and the presence of very nontraditional ores suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. With this in mind, an investigation of unfluxed silicate electrolysis as a method for extracting oxygen, iron, and silicon from lunar regolith was initiated and is discussed. The advantages of the process include simplicity of concept, absence of need to supply reagents from Earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts which has made identifying suitable electrode and container materials difficult

    Oxygen from the lunar soil by molten silicate electrolysis

    Get PDF
    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed

    Oxygen and iron production by electrolytic smelting of lunar soil

    Get PDF
    Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell

    Oxygen and iron production by electrolytic smelting of lunar soil

    Get PDF
    Work during the past year involved two aspects: (1) electrolysis experiments on a larger scale than done before, and (2) collaboration with Carbotek Inc. on design for a lunar magma electrolysis cell. It was demonstrated previously that oxygen can be produced by direct electrolysis of silicate melts. Previous experiments using 50-100 mg of melt have succeeded in measuring melt resistivities, oxygen production efficiencies, and have identified the character of metal products. A series of experiments using 1-8 grams of silicate melt, done in alumina and spinel containers sufficiently large that surface tension effects between the melt and the wall are expected to have minor effect on the behavior of the melt in the region of the electrodes were completed. The purpose of these experiments was to demonstrate the durability of the electrode and container materials, demonstrate the energy efficiency of the electrolysis process, further characterize the nature of the expected metal and spinel products, measure the efficiency of oxygen production and compare to that predicted on the basis of the smaller-scale experiments, and identify any unexpected benefits or problems of the process. Four experimental designs were employed. Detailed results of these experiments are given in the appendix ('Summary of scaling-up experiments'); a general report of the results is given in terms of implications of the experiments on container materials, cathode materials, anode materials, bubble formation and frothing of the melt, cell potential, anode-cathode distance, oxygen efficiency, and energy efficiency

    Lunar resources: Toward living off the lunar land

    Get PDF
    The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space

    Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    Get PDF
    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source

    Dynamics of two interacting Bose-Einstein condensates

    Full text link
    We analize the dynamics of two trapped interacting Bose-Einstein condensates and indentify two regimes for the evolution: the regime of slow periodic oscillations and the regime of strong non-linear mixing leading to the damping of the relative motion of the condensates. We compare our predictions with an experiment recently performed at JILA.Comment: 4 pages RevTeX, 3 eps figure

    Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser

    Full text link
    The electromagnetic radiation generated by ultra-relativistic positrons channelling in a crystalline undulator is discussed. The crystalline undulator is a crystal whose planes are bent periodically with the amplitude much larger than the interplanar spacing. Various conditions and criteria to be fulfilled for the crystalline undulator operation are established. Different methods of the crystal bending are described. We present the results of numeric calculations of spectral distributions of the spontaneous radiation emitted in the crystalline undulator and discuss the possibility to create the stimulated emission in such a system in analogy with the free electron laser. A careful literature survey covering the formulation of all essential ideas in this field is given. Our investigation shows that the proposed mechanism provides an efficient source for high energy photons, which is worth to study experimentally.Comment: 52 pages, MikTeX, 14 figure

    Tumoral response and tumoral phenotypic changes in a rat model of diethylnitrosamine-induced hepatocellular carcinoma after salirasib and sorafenib administration.

    Get PDF
    Several intracellular signaling pathways that are deregulated during hepatocarcinogenesis might constitute potential targets for hepatocellular carcinoma (HCC) therapy. The aim of this study was to test the potential synergic antitumor effect of salirasib and sorafenib in a diethylnitrosamine (DEN)-induced HCC model in rat. The hypothesis of tumor phenotype changes during treatment was also analyzed. DEN was administered to Wistar rats during 9 weeks to induce cirrhosis and liver cancer. After tumor development, rats were treated with intraperitoneal injections of dimethyl sulfoxide (DMSO), or salirasib, and/or with oral sorafenib 5 days/week, during 4 weeks. At sacrifice, number and size of liver tumors as well as tumor burden were recorded, and all liver tumors were processed for histological and immunohistological analyses. Mortality rate was significantly higher in rats treated with salirasib and/or sorafenib than in the control group ( <i>P</i> =0.001). Tumor burden was smaller in the treated group compared with the DMSO control group ( <i>P</i> =0.044), but a synergistic effect of the two chemotherapies could not be observed. In 62.5% of rats (10/16) treated with salirasib and/or sorafenib, a cytokeratin-7 and -19-positive hepatocholangiocellular carcinoma (HCC/CHC) was found vs 20% (5/25) developing such phenotype in the DMSO control group ( <i>P</i> =0.018). Ki67 immunostaining showed significantly reduced tumor cell proliferation in treated rats ( <i>P</i> =0.001), whereas apoptosis as assessed by caspase-3 activity in cell lysate was similar in all groups. The addition of sorafenib to salirasib did not seem to provide any synergistic therapeutic effect in this study. Both chemotherapeutic agents, administered alone or in combination, induced tumoral phenotypic changes in the majority of rats, a finding not associated with an increased tumor cell proliferation or decreased apoptosis. The rat model described in this work constitutes the first experimental tool generating putatively more aggressive combined HCC/CHC tumors following chemotherapy. Further work is required to better characterize this clinically relevant phenomenon
    corecore