15 research outputs found

    Calcium Prevents Tumorigenesis in a Mouse Model of Colorectal Cancer

    Get PDF
    Calcium has been proposed as a mediator of the chemoprevention of colorectal cancer (CRC), but the comprehensive mechanism underlying this preventive effect is not yet clear. Hence, we conducted this study to evaluate the possible roles and mechanisms of calcium-mediated prevention of CRC induced by 1,2-dimethylhydrazine (DMH) in mice.For gene expression analysis, 6 non-tumor colorectal tissues of mice from the DMH + Calcium group and 3 samples each from the DMH and control groups were hybridized on a 4×44 K Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction (PCR). Functional analysis of the microarray data was performed using KEGG and Gene Ontology (GO) analyses. Hub genes were identified using Pathway Studio software.The tumor incidence rates in the DMH and DMH + Calcium groups were 90% and 40%, respectively. Microarray gene expression analysis showed that S100a9, Defa20, Mmp10, Mmp7, Ptgs2, and Ang2 were among the most downregulated genes, whereas Per3, Tef, Rnf152, and Prdx6 were significantly upregulated in the DMH + Calcium group compared with the DMH group. Functional analysis showed that the Wnt, cell cycle, and arachidonic acid pathways were significantly downregulated in the DMH + Calcium group, and that the GO terms related to cell differentiation, cell cycle, proliferation, cell death, adhesion, and cell migration were significantly affected. Forkhead box M1 (FoxM1) and nuclear factor kappa-B (NF-κB) were considered as potent hub genes.In the DMH-induced CRC mouse model, comprehensive mechanisms were involved with complex gene expression alterations encompassing many altered pathways and GO terms. However, how calcium regulates these events remains to be studied

    IQ (2-amino-3-methylimidazo[4,5-f ]quinoline) – induced aberrant crypt foci and colorectal tumour development in rats fed two different carbohydrate diets

    No full text
    In most aberrant crypt foci (ACF) and colorectal tumour studies, chemical carcinogens not normally found in food have been used as initiators. In the present study the food-related compound, IQ (2-amino-3-methylimidazo[4,5-f]quinoline), has been used. A diet high in refined carbohydrates has been associated with enhanced development of ACF and colorectal cancer in humans. The present study was designed as an integrated part of our earlier published ACF study and follows the animals until tumour development. The aim of the study was to investigate (1) the effect of a refined carbohydrate-rich diet on the development of IQ-induced ACF over time and (2) possible correlation between early and late ACF and/or colorectal tumour development. The study showed that a feeding regimen with continuous doses of 0.03% IQ in the diet for 14 weeks, followed by 32 weeks without IQ was able to induce tumours in the rat colon, liver, skin and Zymbal gland. The data demonstrate that a sucrose-rich diet enhance ACF development. A correlation between the outcome of early and late ACF was seen. However, as the tumour incidence of this study was very low it was not possible to obtain a meaningful correlation between ACF development and colorectal tumour incidence

    Tight junction protein claudin-2 promotes self-renewal of human colorectal cancer stem-like cells

    No full text
    Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro. While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence free survival following 5-fluorouracil–based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDH High CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDH High phenotype. Next-generation sequencing in ALDH High cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer. Significance: Claudin-2-mediated regulation of YAP activity and miR-222-3p expression drives CSC renewal in colorectal cancer, making it a potential target for therapy.Sophie Paquet-Fifield ... Melissa J. Davis ... et. a
    corecore