1,812 research outputs found
The Joint Vienna Institute
"How does the intellectual role played by international training organisations fit into the contemporary architecture of global governance? The international diffusion of economic policy ideas represents one of the core dimensions of contemporary global governance, which has generated heated controversy in recent years with international institutions such as the International Monetary Fund (IMF) and the World Bank castigated for championing a ‘one-size-fits-all’ brand of neoliberal economic reform. Yet while substantial scholarly attention has focused on analysing the effects of the formal compliance mechanisms that the IMF and the World Bank rely on to implement neoliberal policy changes in borrowing countries, such as loan conditionality, less attention has been devoted to exploring the intermediate avenues through which neoliberal ideas travel from global governance institutions to national governance contexts. This article aims to address this gap in the study of contemporary global governance and neoliberal policy diffusion through critically examining the evolving role of the Joint Vienna Institute (JVI), an international training organisation set up after the end of the Cold War to transmit global ‘best practice’ economic policy ideas to national officials in post-communist economies.
Observation of Entanglement-Dependent Two-Particle Holonomic Phase
Holonomic phases---geometric and topological---have long been an intriguing
aspect of physics. They are ubiquitous, ranging from observations in particle
physics to applications in fault tolerant quantum computing. However, their
exploration in particles sharing genuine quantum correlations lack in
observations. Here we experimentally demonstrate the holonomic phase of two
entangled-photons evolving locally, which nevertheless gives rise to an
entanglement-dependent phase. We observe its transition from geometric to
topological as the entanglement between the particles is tuned from zero to
maximal, and find this phase to behave more resilient to evolution changes with
increasing entanglement. Furthermore, we theoretically show that holonomic
phases can directly quantify the amount of quantum correlations between the two
particles. Our results open up a new avenue for observations of holonomic
phenomena in multi-particle entangled quantum systems.Comment: 8 pages, 6 figure
Efficient measurement of quantum dynamics via compressive sensing
The resources required to characterise the dynamics of engineered quantum
systems-such as quantum computers and quantum sensors-grow exponentially with
system size. Here we adapt techniques from compressive sensing to exponentially
reduce the experimental configurations required for quantum process tomography.
Our method is applicable to dynamical processes that are known to be
nearly-sparse in a certain basis and it can be implemented using only
single-body preparations and measurements. We perform efficient, high-fidelity
estimation of process matrices on an experiment attempting to implement a
photonic two-qubit logic-gate. The data base is obtained under various
decoherence strengths. We find that our technique is both accurate and noise
robust, thus removing a key roadblock to the development and scaling of quantum
technologies.Comment: New title and authors. A new experimental section. Significant
rewrite of the theor
Discrete single-photon quantum walks with tunable decoherence
Quantum walks have a host of applications, ranging from quantum computing to
the simulation of biological systems. We present an intrinsically stable,
deterministic implementation of discrete quantum walks with single photons in
space. The number of optical elements required scales linearly with the number
of steps. We measure walks with up to 6 steps and explore the
quantum-to-classical transition by introducing tunable decoherence. Finally, we
also investigate the effect of absorbing boundaries and show that decoherence
significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure
Two-photon quantum walks in an elliptical direct-write waveguide array
Integrated optics provides an ideal test bed for the emulation of quantum
systems via continuous-time quantum walks. Here we study the evolution of
two-photon states in an elliptic array of waveguides. We characterise the
photonic chip via coherent-light tomography and use the results to predict
distinct differences between temporally indistinguishable and distinguishable
two-photon inputs which we then compare with experimental observations. Our
work highlights the feasibility for emulation of coherent quantum phenomena in
three-dimensional waveguide structures.Comment: 8 pages, 7 figure
Benchmarking high fidelity single-shot readout of semiconductor qubits
Determination of qubit initialisation and measurement fidelity is important
for the overall performance of a quantum computer. However, the method by which
it is calculated in semiconductor qubits varies between experiments. In this
paper we present a full theoretical analysis of electronic single-shot readout
and describe critical parameters to achieve high fidelity readout. In
particular, we derive a model for energy selective state readout based on a
charge detector response and examine how to optimise the fidelity by choosing
correct experimental parameters. Although we focus on single electron spin
readout, the theory presented can be applied to other electronic readout
techniques in semiconductors that use a reservoir.Comment: 19 pages, 8 figure
Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome
Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis
Rationality as the Rule of Reason
The demands of rationality are linked both to our subjective normative perspective (given that rationality is a person-level concept) and to objective reasons or favoring relations (given that rationality is non-contingently authoritative for us). In this paper, I propose a new way of reconciling the tension between these two aspects: roughly, what rationality requires of us is having the attitudes that correspond to our take on reasons in the light of our evidence, but only if it is competent. I show how this view can account for structural rationality on the assumption that intentions and beliefs as such involve competent perceptions of downstream reasons, and explore various implications of the account
Experimental distribution of entanglement with separable carriers
The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments
- …