52,112 research outputs found

    Television viewing time and risk of incident obesity and central obesity: the English longitudinal study of ageing

    Get PDF
    Background Research suggests television viewing time may be associated with incident obesity and central obesity in young adults. No study has investigated these associations in older English adults. The aim of this study was to investigate longitudinal associations between television viewing time and incident obesity and central obesity in a sample of older English adults. Analyses of data from the English Longitudinal Study of Ageing. At baseline (2008), participants reported their television viewing time. Research nurses recorded obesity and central obesity by body mass index and waist circumference, respectively, at four year follow-up. Associations between television viewing time and incident obesity (BMI > 30 kg/m2) and central obesity (waist >102 cm men; > 88 cm women) at four year follow-up were examined using adjusted logistic regression. Participants gave full written informed consent to participate in the study and ethical approval was obtained from the London Multicentre Research Ethics Committee. Results A total of 3777 initially non-obese participants (aged 64.8 ± 8.6 yrs, 46.4% male) were included in the analyses using BMI as an outcome and 2947 for the analyses using waist circumference. No significant associations were found between television viewing time and incident obesity. A significant association was found between watching ≥6 hrs/d of television (compared to <2 hrs/d) and central obesity (Odds Ratio 1.48; 95% confidence interval 1.07 to 2.03) after adjustment for covariables including physical activity. Conclusions In this sample of older community dwelling English adults greater television viewing time was associated with incident central obesity, but not total obesity when measured by BMI. Interventions to reduce the incidence of central obesity in this age group that focus on reducing TV time, as well as targeting other health behaviours (eg, increasing physical activity levels, improving dietary intake) might prove useful

    Mission and spacecraft support functions of the Materials Engineering Branch: A space oriented technology resource

    Get PDF
    The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed

    Robust non-adiabatic molecular dynamics for metals and insulators

    Full text link
    We present a new formulation of the correlated electron-ion dynamics (CEID) scheme, which systematically improves Ehrenfest dynamics by including quantum fluctuations around the mean-field atomic trajectories. We show that the method can simulate models of non-adiabatic electronic transitions, and test it against exact integration of the time-dependent Schroedinger equation. Unlike previous formulations of CEID, the accuracy of this scheme depends on a single tunable parameter which sets the level of atomic fluctuations included. The convergence to the exact dynamics by increasing the tunable parameter is demonstrated for a model two level system. This algorithm provides a smooth description of the non-adiabatic electronic transitions which satisfies the kinematic constraints (energy and momentum conservation) and preserves quantum coherence. The applicability of this algorithm to more complex atomic systems is discussed.Comment: 36 pages, 5 figures. Accepted for publication in Journal of Chemical Physic
    • …
    corecore