75,499 research outputs found

    Secure Key Distribution by Swapping Quantum Entanglement

    Full text link
    We report two key distribution schemes achieved by swapping quantum entanglement. Using two Bell states, two bits of secret key can be shared between two distant parties that play symmetric and equal roles. We also address eavesdropping attacks against the schemes.Comment: 4 pages, 2 figures, 3 tables. The revised version will appear in Phys. Rev.

    Unitary transformation for the system of a particle in a linear potential

    Full text link
    A unitary operator which relates the system of a particle in a linear potential with time-dependent parameters to that of a free particle, has been given. This operator, closely related to the one which is responsible for the existence of coherent states for a harmonic oscillator, is used to find a general wave packet described by an Airy function. The kernel (propagator) and a complete set of Hermite-Gaussian type wave functions are also given.Comment: Europhysics Letters (in press

    Massive star evolution in close binaries:conditions for homogeneous chemical evolution

    Full text link
    We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow during the Main-Sequence phase. We consider the case of rotating stars computed with a strong coupling mediated by an interior magnetic field. In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realized: the initial rotation must be high enough, the loss of angular momentum by stellar winds should be modest. This last point favors metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronization is high enough (typically a time-averaged surface velocities during the Main-Sequence phase above 250 km s1^{-1}), whatever the mass losses. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favored at higher metallicities. Roche lobe overflow avoidance is favored at lower metallicities due to the fact that stars with less metals remain more compact. We study also the impact of different processes for the angular momentum transport on the surface abundances and velocities in single and close binaries. In models where strong internal coupling is assumed, strong surface enrichments are always associated to high surface velocities in binary or single star models. In contrast, models computed with mild coupling may produce strong surface enrichments associated to low surface velocities. Close binary models may be of interest for explaining homogeneous massive stars, fast rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even at high metallicities.Comment: 21 pages, 13 figures, 3 tables, accepted for publication in Astronomy and Astrophysic

    Determining SUSY Parameters in Chargino Pair-Production in e+ee^+e^- Collisions

    Get PDF
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2}, mixtures of charged color-neutral gauginos and higgsinos, belong to the class of the lightest supersymmetric particles. They are easy to observe at e+ee^+e^- colliders. By measuring the total cross sections and the left-right asymmetries with polarized electron beams in e+eχ~iχ~j+[i,j=1,2]e^+e^-\to\tilde{\chi}_i^-\tilde{\chi}_j^+ [i,j=1,2], the chargino masses and the gaugino-higgsino mixing angles can be determined. From these observables the fundamental SUSY parameters can be derived: the SU(2) gaugino mass M2M_2, the modulus μ|\mu| and cosΦμ\cos \Phi_\mu of the higgsino mass parameter, and tanβ=v2/v1\tan\beta = v_2/v_1, the ratio of the vacuum expectation values of the two neutral Higgs doublet fields. The solutions are unique; the CP-violating phase Φμ\Phi_\mu can be determined uniquely by analyzing effects due to the normal polarization of the charginos.Comment: 20 pages, 4 figures, uses axodraw.st

    Close binary evolution I. The tidally induced shear mixing in rotating binaries

    Full text link
    We study how tides in a binary system induce some specific internal shear mixing, able to substantially modify the evolution of close binaries prior to mass transfer. We construct numerical models accounting for tidal interactions, meridional circulation, transport of angular momentum, shears and horizontal turbulence and consider a variety of orbital periods and initial rotation velocities. Depending on orbital periods and rotation velocities, tidal effects may spin down (spin down Case) or spin up (spin up Case) the axial rotation. In both cases, tides may induce a large internal differential rotation. The resulting tidally induced shear mixing (TISM) is so efficient that the internal distributions of angular velocity and chemical elements are greatly influenced. The evolutionary tracks are modified, and in both cases of spin down and spin up, large amounts of nitrogen can be transported to the stellar surfaces before any binary mass transfer. Meridional circulation, when properly treated as an advection, always tends to counteract the tidal interaction, tending to spin up the surface when it is braked down and vice versa. As a consequence, the times needed for the axial angular velocity to become equal to the orbital angular velocity may be larger than given by typical synchronization timescales. Also, due to meridional circulation some differential rotation remains in tidally locked binary systems.Comment: 10 pages, 18 figures, Accepted for publication in Astronomy and Astrophysic
    corecore