115,301 research outputs found

    Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    Get PDF
    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated

    Extended Hubbard model on a C20_{20} molecule

    Full text link
    The electronic correlations on a C20_{20} molecule, as described by an extended Hubbard Hamiltonian with a nearest neighbor Coulomb interaction of strength VV, are studied using quantum Monte Carlo and exact diagonalization methods. For electron doped C20_{20}, it is known that pair-binding arising from a purely electronic mechanism is absent within the standard Hubbard model (V=0). Here we show that this is also the case for hole doping for 0<U/t≤30<U/t\leq 3 and that, for both electron and hole doping, the effect of a non-zero VV is to work against pair-binding. We also study the magnetic properties of the neutral molecule, and find transitions between spin singlet and triplet ground states for either fixed UU or VV values. In addition, spin, charge and pairing correlation functions on C20_{20} are computed. The spin-spin and charge-charge correlations are very short-range, although a weak enhancement in the pairing correlation is observed for a distance equal to the molecular diameter.Comment: 9 pages, 8 figures, 4 table

    Single-particle Excitation Spectra of C60_{60} Molecules and Monolayers

    Full text link
    In this paper we present calculations of single-particle excitation spectra of neutral and three-electron-doped Hubbard C60_{60} molecules and monolayers from large-scale quantum Monte Carlo simulations and cluster perturbation theory. By a comparison to experimental photoemission, inverse photoemission, and angle-resolved photoemission data, we estimate the intermolecular hopping integrals and the C60_{60} molecular orientation angle, finding agreement with recent X-ray photoelectron diffraction (XPD) experiments. Our results demonstrate that a simple effective Hubbard model, with intermediate coupling, U=4tU=4t, provides a reasonable basis for modeling the properties of C60_{60} compounds.Comment: 6 page

    Oscillator strength of the resonance transitions of ground-state N and O

    Get PDF
    Oscillator strength of resonance transitions of ground state nitrogen and oxyge

    Josephson Currents in Quantum Hall Devices

    Full text link
    We consider a simple model for an SNS Josephson junction in which the "normal metal" is a section of a filling-factor ν=2\nu=2 integer quantum-Hall edge. We provide analytic expressions for the current/phase relations to all orders in the coupling between the superconductor and the quantum Hall edge modes, and for all temperatures. Our conclusions are consistent with the earlier perturbative study by Ma and Zyuzin [Europhysics Letters {\bf 21} 941-945 (1993)]: The Josephson current is independent of the distance between the superconducting leads, and the upper bound on the maximum Josephson current is inversely proportional to the perimeter of the Hall device.Comment: Revtex4. 22 pages 9 figures. Replaced version has minor typos fixed and one added referenc
    • …
    corecore