8,804 research outputs found

    The Anderson impurity model with a narrow-band host: from orbital physics to the Kondo effect

    Full text link
    A particle-hole symmetric Anderson impurity model with a metallic host of narrow bandwidth is studied within the framework of the local moment approach. The resultant single-particle spectra are compared to unrestricted Hartree-Fock, second order perturbation theory about the noninteracting limit, and Lanczos spectra by Hofstetter and Kehrein. Rather accurate analytical results explain the spectral evolution over almost the entire range of interactions. These encompass, in particular, a rationale for the four-peak structure observed in the low-energy sector of the Lanczos spectra in the moderate-coupling regime. In weak coupling, the spectral evolution is governed by orbital effects, while in the strong coupling Kondo limit, the model is shown to connect smoothly to the generic Anderson impurity with a flat and infinitely wide hybridization band.Comment: 17 pages, 7 figure

    Jet-cloud interations and the brightening of the narrow line region in Seyfert galaxies

    Get PDF
    We study the kinematical and brightness evolution of emission line clouds in the narrow line region (NLR) of Seyfert galaxies during the passage of a jet. We derive a critical density above which a cloud remains radiative after compression by the jet cocoon. The critical density depends mainly on the cocoon pressure. Super-critical clouds increase in emission line brightness, while sub-critical clouds generally are highly overheated reducing their luminosity below that of the inter-cloud medium. Due to the pressure stratification in the bow-shock of the jet, a cylindrical structure of nested shells develops around the jet. The most compact and brightest compressed clouds surround the cloud-free channel of the radio jet. To support our analytical model we present a numerical simulation of a supersonic jet propagating into a clumpy NLR. The position-velocity diagram of the simulated H_alpha emission shows total line widths of the order of 500 km/s with large-scale variations in the radial velocities of the clouds due to the stratified pressure in the bow-shock region of the jet. Most of the luminosity is concentrated in a few dense clouds surrounding the jet. These morphological and kinematic signatures are all found in the well observed NLR of NGC1068 and other Seyfert galaxies.Comment: 11 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    Center Domains and their Phenomenological Consequences

    Full text link
    We argue that the domain structure of deconfined QCD matter, which can be inferred from the properties of the Polyakov loop, can simultaneously explain the two most prominent experimentally verified features of the quark-gluon plasma, namely its large opacity as well as its near ideal fluid properties

    Photon State Tomography for Two-Mode Correlated Itinerant Microwave Fields

    Full text link
    Continuous variable entanglement between two modes of a radiation field is usually studied at optical frequencies. As an important step towards the observation of entanglement between propagating microwave photons we demonstrate the experimental state reconstruction of two field modes in the microwave domain. In particular, we generate two-mode correlated states with a Josephson parametric amplifier and detect all four quadrature components simultaneously in a two-channel heterodyne setup using amplitude detectors. Analyzing two-dimensional phase space histograms for all possible pairs of quadratures allows us to determine the full covariance matrix and reconstruct the four-dimensional Wigner function. We demonstrate strong correlations between the quadrature amplitude noise in the two modes. Under ideal conditions two-mode squeezing below the standard quantum limit should be observable in future experiments.Comment: 4 pages, 4 figure

    NGC 2362: a Template for Early Stellar Evolution

    Get PDF
    We present UBVRI photometry for the young open cluster NGC 2362. From analysis of the appropriate color-color and color-magnitude diagrams we derive the fundamental parameters of the NGC 2362 cluster to be: age = 5 (+1-2) Myr, distance = 1480 pc, E(B-V)=0.10 mag. The cluster age was independently determined for both high mass (2.1 - 36Msun) and low mass (0.7 - 1.2Msun) stars with excellent agreement between the ages derived using post-main sequence and pre-main sequence evolutionary tracks for the high and low mass stars respectively. Analysis of this cluster's color-magnitude diagram reveals a well defined pre-main sequence (covering DeltaV ~ 9 magnitudes in V and extending from early A stars to near the hydrogen burning limit) which makes this cluster an ideal laboratory for pre-main sequence evolution studies.Comment: 9 pages, 3 figures, to be published in ApJ
    • …
    corecore