46 research outputs found
Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy
This paper reports a review of an environmentally clean and efficient source of energy such as solid oxide fuel cell hybrid systems. Due to climate concerns, most nations are seeking alternative means of generating energy from a clean, efficient and environmental-friendly method. However, this has proven a big hurdle for both academic and industry researchers over many years. Currently, practical and technically feasible solution can be obtained via an integration of a microturbine and a fuel cell (hybrid systems). Combining the two distinct systems in a hybrid arrangement the efficiency of the microturbine increases from 25 to 30% to the 60-65% range. Hence, this paper outlines an engineering power generation solution towards the acute global population growth, the growing need, environmental concerns, intelligent use of energy with attendant environmental and hybrid system layouts concerning arising problems and tentative proposed solutions. Furthermore, advantages of a solid oxide fuel cell hybrid systems with respect to the other technologies are identified and discussed rationally. Special attention is devoted to modelling with software and emulator rigs and system prototypes. The paper also reviews the limitations and the benefits of these hybrid systems in relationship with energy, environment and sustainable development. Few potential applications, as long-term potential actions for sustainable development, and the future of such devices are further discussed
Pro-asthmatic cytokines regulate unliganded and ligand-dependent glucocorticoid receptor signaling in airway smooth muscle
To elucidate the regulation of glucocorticoid receptor (GR) signaling under pro-asthmatic conditions, cultured human airway smooth muscle (HASM) cells were treated with proinflammatory cytokines or GR ligands alone and in combination, and then examined for induced changes in ligand-dependent and -independent GR activation and downstream signaling events. Ligand stimulation with either cortisone or dexamethsone (DEX) acutely elicited GR translocation to the nucleus and, comparably, ligand-independent stimulation either with the Th2 cytokine, IL-13, or the pleiotropic cytokine combination, IL-1ÎČ/TNFα, also acutely evoked GR translocation. The latter response was potentiated by combined exposure of cells to GR ligand and cytokine. Similarly, treatment with either DEX or IL-13 alone induced GR phosphorylation at its serine-211 residue (GRSer211), denoting its activated state, and combined treatment with DEX+IL-13 elicited heightened and sustained GRSer211phosphorylation. Interestingly, the above ligand-independent GR responses to IL-13 alone were not associated with downstream GR binding to its consensus DNA sequence or GR transactivation, whereas both DEX-induced GR:DNA binding and transcriptional activity were significantly heightened in the presence of IL-13, coupled to increased recruitment of the transcriptional co-factor, MED14. The stimulated GR signaling responses to DEX were prevented in IL-13-exposed cells wherein GRSer211 phosphorylation was suppressed either by transfection with specific serine phosphorylation-deficient mutant GRs or treatment with inhibitors of the MAPKs, ERK1/2 and JNK. Collectively, these novel data highlight a heretofore-unidentified homeostatic mechanism in HASM cells that involves pro-asthmatic cytokine-driven, MAPK-mediated, non-ligand-dependent GR activation that confers heightened glucocorticoid ligand-stimulated GR signaling. These findings raise the consideration that perturbations in this homeostatic cytokine-driven GR signaling mechanism may be responsible, at least in part, for the insensirtivity to glucocorticoid therapy that is commonly seen in individuals with severe asthma
Simulation of an Innovative Startup Phase for SOFC Hybrid Systems Based on Recompression Technology: Emulator Test Rig
This paper presents a novel startup approach for solid oxide fuel cell (SOFC) hybrid systems (HSs) based on recompression technology. This startup approach shows a novel method of managing a complete plant to obtain better performance, which is always also a difficult task for equipment manufactures. The research activities were carried out using the HS emulator rig located in Savona (Italy) and developed by the Thermochemical Power Group (TPG) of the University of Genoa. The test rig consists of three integrated technologies: a 100 kWe recuperated microturbine modified for external connections, a high temperature modular vessel necessary to emulate the dimensions of an SOFC stack, and, for air recompression, a turbocharger necessary to increase fuel cell pressure (using part of the recuperator outlet flow) as required for efficiency increase and to manage the cathodic recirculation. It was necessary to develop a theoretical model in order to prevent abnormal plant startup conditions as well as motivated by economic considerations. This transient model of the emulator rig was developed using MATLAB V R -Simulink V R environment to study the time-dependent (including the control system aspects) behavior during the entire system (emulator equipped with the turbocharger) startup condition. The results obtained were able to demonstrate that the HS startup phase can be safely managed with better performance developing a new control logic. In detail, the startup phase reported in this paper shows that all important parameters were always inside acceptable operating zones (surge margin kept above 1.1, turbine outlet temperature (TOT), and fuel flow maintained lower than 918.15 K and 7.7 g/s, respectively)