359 research outputs found
Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight
We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel
Stochasticity of flow through microcirculation as a regulator of oxygen delivery
<p>Abstract</p> <p>Objective</p> <p>Observations of microcirculation reveal that the blood flow is subject to interruptions and resumptions. Accepting that blood randomly stops and resumes, one can show that the randomness could be a powerful means to match oxygen delivery with oxygen demand.</p> <p>Method</p> <p>The ability of the randomness to regulate oxygen delivery is based on two suppositions: (a) the probability for flow to stop does not depend on the time of uninterrupted flow, thus the number of interruptions of flow follows a Poisson distribution; (b) the probability to resume the flow does not depend on the time for flow being interrupted; meaning that time spent by erythrocytes at rest follows an exponential distribution. Thus the distribution of the time to pass an organ is a compound Poisson distribution. The Laplace transform of the given distribution gives the fraction of oxygen that passes the organ.</p> <p>Result</p> <p>Oxygen delivery to the tissues directly depends on characteristics of the irregularity of the flow through microcirculation.</p> <p>Conclusion</p> <p>By variation of vasomotion activity it is possible to change delivery of oxygen to a tissue by up to 8 times.</p
Nanoelectropulse-driven membrane perturbation and small molecule permeabilization
BACKGROUND: Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization. RESULTS: In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses). Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X(7 )receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. CONCLUSION: Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose responses of cells to unipolar and bipolar pulses ranging from 3 ns to 30 ns duration support the hypothesis that a field-driven charging of the membrane dielectric causes the formation of pores on a nanosecond time scale, and that the anionic phospholipid PS migrates electrophoretically along the wall of these pores to the external face of the membrane
Recommended from our members
Rapid and objective assessment of neural function in autism spectrum disorder using transient visual evoked potentials
OBJECTIVE:
There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD). Visual evoked potentials (VEPs) offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology.
METHODS:
Transient VEPs (tVEPs) were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD) children, and 23 unaffected siblings (SIBS). A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG) studies.
RESULTS:
Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition.
CONCLUSIONS:
The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed
Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop
The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells
Sickness behaviour pushed too far β the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma
Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines β generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbΞ±) that control circadian rhythm β becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases
- β¦