75 research outputs found

    Fractional Analytic QCD beyond Leading Order in timelike region

    Full text link
    In this paper we show that, as in the spacelike case, the inverse logarithmic expansion is applicable for all values of the argument of the analytic coupling constant. We present two different approaches, one of which is based primarily on trigonometric functions, and the latter is based on dispersion integrals. The results obtained up to the 5th order of perturbation theory, have a compact form and their acquiring is much easier than the methods that have been used before. As an example, we apply our results to study the Higgs boson decay into a bb pair.Comment: 30 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:2203.0930

    On Fractional Analytic QCD

    Full text link
    We present a brief overview of fractional analytic QCD.Comment: 7 pages, 1 figure, contribution to the proceedings of the XXVth International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics and Quantum Chromodynamics (September 18-23, Dubna, Russia

    Investigation of the Method of Dynamic Microwave Power Redistribution in a Resonator-Type Plasmatron

    Get PDF
    The investigation results of a dynamic microwave power fmicrowave = 2, 45 ± 0,05 GHz redistribution in a 9000 cm3 reaction-discharge chamber of a microwave resonator-type plasmatron are presented. In order to redistribute the microwave power, a rotating metallic four-blade L-form dissector placed above the reaction-discharge chamber was used. The microwave power in the local points at the axis of the chamber with plasma and without it was measured applying the "active probe" method. During the experiments the chamber contained silicon plates. Periodical interchange of maximum and minimum microwave power values along the chamber axis was established experimentally. Note, when the dissector was rotating, the range of maximum and minimum "active probe" values dispersion decreased. It has been established that during the dissector rotation the microwave power in the local discharge areas changes with periodic repetition every quarter of revolution

    Neutron star inner crust: reduction of shear modulus by nuclei finite size effect

    Full text link
    The elasticity of neutron star crust is important for adequate interpretation of observations. To describe elastic properties one should rely on theoretical models. The most widely used is Coulomb crystal model (system of point-like charges on neutralizing uniform background), in some works it is corrected for electron screening. These models neglect finite size of nuclei. This approximation is well justified except for the innermost crustal layers, where nuclei size becomes comparable with the inter-nuclear spacing. Still, even in those dense layers it seems reasonable to apply the Coulomb crystal result, if one assumes that nuclei are spherically symmetric: Coulomb interaction between them should be the same as interaction between point-like charges. This argument is indeed correct, however, as we point here, shear of crustal lattice generates (microscopic) quadrupole electrostatic potential in a vicinity of lattice cites, which induces deformation on the nuclei. We analyze this problem analytically within compressible liquid drop model, using ionic spheroid model (which is generalization of well known ion sphere model). In particular, for ground state crust composition the effective shear modulus is reduced for a factor of 1u5/3/(2+3u4u1/3)1-u^{5/3}/(2+3\,u-4\,u^{1/3}), where u is the filling factor (ratio of the nuclei volume to the volume of the cell). This result is universal and does not depend on the applied nucleon interaction model. For the innermost layers of inner crust u~0.2 leading to reduction of the shear modulus by ~25%, which can be important for correct interpretation of quasi-periodic oscillations in the tails of magnetar flares.Comment: 7 pages, submitted to MNRAS on Sept.

    Bjorken sum rule with analytic coupling at low Q2 values

    Full text link
    The experimental data obtained for the polarized Bjorken sum rule \Gamma^{(p-n)}_1(Q^2) for small values of Q2 are approximated by the predictions obtained in the framework of analytic QCD up to the 5th order perturbation theory, whose coupling constant does not contain the Landau pole. We found an excellent agreement between the experimental data and the predictions of analytic QCD, as well as a strong difference between these data and the results obtained in the framework of standard QCD.Comment: 9 pages, 1 figur

    A series of coverings of the regular n-gon

    Full text link
    We define an infinite series of translation coverings of Veech's double-n-gon for odd n greater or equal to 5 which share the same Veech group. Additionally we give an infinite series of translation coverings with constant Veech group of a regular n-gon for even n greater or equal to 8. These families give rise to explicit examples of infinite translation surfaces with lattice Veech group.Comment: A missing case in step 1 in the proof of Thm. 1 b was added. (To appear in Geometriae Dedicata.

    Diffractive orbits in isospectral billiards

    Full text link
    Isospectral domains are non-isometric regions of space for which the spectra of the Laplace-Beltrami operator coincide. In the two-dimensional Euclidean space, instances of such domains have been given. It has been proved for these examples that the length spectrum, that is the set of the lengths of all periodic trajectories, coincides as well. However there is no one-to-one correspondence between the diffractive trajectories. It will be shown here how the diffractive contributions to the Green functions match nevertheless in a ''one-to-three'' correspondence.Comment: 20 pages, 6 figure

    Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

    Full text link
    We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on ZZ-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical ZZ-periodic surface with boundary are recurrent.Comment: 34 pages, 13 figures. To be published in V. V. Kozlov's Festschrif

    A pseudointegrable Andreev billiard

    Full text link
    A circular Andreev billiard in a uniform magnetic field is studied. It is demonstrated that the classical dynamics is pseudointegrable in the same sense as for rational polygonal billiards. The relation to a specific polygon, the asymmetric barrier billiard, is discussed. Numerical evidence is presented indicating that the Poincare map is typically weak mixing on the invariant sets. This link between these different classes of dynamical systems throws some light on the proximity effect in chaotic Andreev billiards.Comment: 5 pages, 5 figures, to appear in PR

    Hexagonal dielectric resonators and microcrystal lasers

    Get PDF
    We study long-lived resonances (lowest-loss modes) in hexagonally shaped dielectric resonators in order to gain insight into the physics of a class of microcrystal lasers. Numerical results on resonance positions and lifetimes, near-field intensity patterns, far-field emission patterns, and effects of rounding of corners are presented. Most features are explained by a semiclassical approximation based on pseudointegrable ray dynamics and boundary waves. The semiclassical model is also relevant for other microlasers of polygonal geometry.Comment: 12 pages, 17 figures (3 with reduced quality
    corecore