2,043 research outputs found

    Magnetoelectric effects in an organo-metallic quantum magnet

    Full text link
    We observe a bilinear magnetic field-induced electric polarization of 50 μC/m2\mu C/m^2 in single crystals of NiCl2_2-4SC(NH2_2)2_2 (DTN). DTN forms a tetragonal structure that breaks inversion symmetry, with the highly polar thiourea molecules all tilted in the same direction along the c-axis. Application of a magnetic field between 2 and 12 T induces canted antiferromagnetism of the Ni spins and the resulting magnetization closely tracks the electric polarization. We speculate that the Ni magnetic forces acting on the soft organic lattice can create significant distortions and modify the angles of the thiourea molecules, thereby creating a magnetoelectric effect. This is an example of how magnetoelectric effects can be constructed in organo-metallic single crystals by combining magnetic ions with electrically polar organic elements.Comment: 3 pages, 3 figure

    Macroscopic evidence for quantum criticality and field-induced quantum fluctuations in cuprate superconductors

    Get PDF
    We present macroscopic experimental evidence for field-induced microscopic quantum fluctuations in different hole- and electron-type cuprate superconductors with varying doping levels and numbers of CuO2_2 layers per unit cell. The significant suppression of the zero-temperature in-plane magnetic irreversibility field relative to the paramagnetic field in all cuprate superconductors suggests strong quantum fluctuations due to the proximity of the cuprates to quantum criticality.Comment: 3 figures. To appear in Phys. Rev. B, Rapid Communications (2007). For correspondence, contact: Nai-Chang Yeh (e-mail: [email protected]

    Spin-strain coupling in NiCl2-4SC(NH2)2

    Get PDF
    We report results of ultrasonic investigations of the quantum S = 1 spin-chain magnet NiCl2-4SC(NH2)2, also known as DTN, in magnetic fields up to 18 T and temperatures down to 0.3 K. A field H along the [001] direction induces a transition into an antiferromagnetic phase with T(N)max ≈ 1.2 K. Accordingly, at T = 0 there are two quantum critical points at ~2.1 T and at ~12.6 T. The acoustic c33 mode, propagating along the spin chains, shows a pronounced softening close to the phase transition, accompanied by energy dissipation of the sound wave. The H-T phase diagram obtained from our measurements is compared with results from other experimental investigations and the low-temperature acoustic anomalies are traced up to T > T(N). We also report frequency-dependent effects, which open the possibility to investigate the spin fluctuations in the critical regions. Our observations show an important role of the spin-phonon coupling in DTN

    Character of magnetic excitations in a quasi-one-dimensional antiferromagnet near the quantum critical points: Impact on magneto-acoustic properties

    Full text link
    We report results of magneto-acoustic studies in the quantum spin-chain magnet NiCl2_2-4SC(NH2_2)2_2 (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c33c_{33} mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T>TNT > T_N, where the thermodynamic properties are determined by fermionic magnetic excitations, the "hallmark" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a 3D bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.Comment: 5 pages, 4 figures. Accepted for publication by Phys. Rev

    Experimental investigation of the competing orders and quantum criticality in hole- and electron-doped cuprate superconductors

    Get PDF
    We investigate the issues of competing orders and quantum criticality in cuprate superconductors via experimental studies of the high-field thermodynamic phase diagrams and the quasiparticle tunneling spectroscopy. Substantial field-induced quantum fluctuations are found in all cuprates investigated, and the corresponding correlation with quasiparticle spectra suggest that both electron- (n-type) and hole-doped (p-type) cuprate superconductors are in close proximity to a quantum critical point that separates a pure superconducting (SC) phase from a phase consisting of coexisting SC and a competing order. We further suggests that the relevant competing order is likely a spin-density wave (SDW) or a charge density wave (CDW), which can couple efficiently to an in-plane Cu-O bond stretching longitudinal optical (LO) phonon mode in the p-type cuprates but not in the n-type cuprates. This cooperative interaction may account for the pseudogap phenomenon above T, only in the p-type cuprate superconductors

    Low temperature specific heat of the heavy fermion superconductor PrOs4_4Sb12_{12}

    Full text link
    We report the magnetic field dependence of the low temperature specific heat of single crystals of the first Pr-based heavy fermion superconductor PrOs4_4Sb12_{12}. The low temperature specific heat and the magnetic phase diagram inferred from specific heat, resistivity and magnetisation provide compelling evidence of a doublet ground state and hence superconductivity mediated by quadrupolar fluctuations. This establishes PrOs4_4Sb12_{12} as a very strong contender of superconductive pairing that is neither electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure

    Magnetostriction in the Bose-Einstein Condensate quantum magnet NiCl2-4SC(NH2)2

    Full text link
    The quantum magnet NiCl2_2-4SC(NH2_2)2_2 is a candidate for observing Bose-Einstein Condensation of spin degrees of freedom in applied magnetic fields. An XY antiferromagnetic ordered state occurs in a dome-shaped region of the temperature-field phase diagram between Hc1_{c1} = 2.1 T and Hc2_{c2} = 12.6 T and below 1.2 K. BEC corresponds to the field-induced quantum phase transition into the ordered state. We investigate magnetostriction in single crystals of this compound at dilution refrigerator temperatures in magnetic fields up to 18 T, and as a function of magnetic field angle. We show that significant changes in the lattice parameters are induced by magnetic fields, and argue that these result from antiferromagnetic couplings between the Ni spins along the tetragonal c-axis. The magnetic phase diagram as a function of temperature, field, and field angle can be extracted from these data. We discuss the implications of these results to Bose-Einstein Condensation in this system.Comment: Submitted to Journal of Applied Physic
    corecore