2,159 research outputs found

    Core-shell structures in single flexible-semiflexible block copolymers: Finding the free energy minimum for the folding transition

    Get PDF
    We investigate the folding transition of a single diblock copolymer consisting of a semiflexible and a flexible block. We obtain a {\it Saturn-shaped} core-shell conformation in the folded state, in which the flexible block forms a core and the semiflexible block wraps around it. We demonstrate two distinctive features of the core-shell structures: (i) The kinetics of the folding transition in the copolymer are significantly more efficient than those of a semiflexible homopolymer. (ii) The core-shell structure does not depend on the transition pathway

    Exponents of 2-multiarrangements and multiplicity lattices

    Full text link
    We introduce a concept of multiplicity lattices of 2-multiarrangements, determine the combinatorics and geometry of that lattice, and give a criterion and method to construct a basis for derivation modules effectively.Comment: 14 page

    General pairing interactions and pair truncation approximations for fermions in a single-j shell

    Full text link
    We investigate Hamiltonians with attractive interactions between pairs of fermions coupled to angular momentum J. We show that pairs with spin J are reasonable building blocks for the low-lying states. For systems with only a J = Jmax pairing interaction, eigenvalues are found to be approximately integers for a large array of states, in particular for those with total angular momenta I le 2j. For I=0 eigenstates of four fermions in a single-j shell we show that there is only one non-zero eigenvalue. We address these observations using the nucleon pair approximation of the shell model and relate our results with a number of currently interesting problems.Comment: a latex text file and 2 figures, to be publishe

    Ground state spin 0+^+ dominance of many-body systems with random interactions and related topics

    Full text link
    In this talk we shall show our recent results in understanding the spinparity^{\rm parity} 0+^+ ground state (0 g.s.) dominance of many-body systems. We propose a simple approach to predict the spin II g.s. probabilities which does not require the diagonalization of a Hamiltonian with random interactions. Some findings related to the 0 g.s. dominance will also be discussed.Comment: 11 pages and 4 figure

    Chamber basis of the Orlik-Solomon algebra and Aomoto complex

    Full text link
    We introduce a basis of the Orlik-Solomon algebra labeled by chambers, so called chamber basis. We consider structure constants of the Orlik-Solomon algebra with respect to the chamber basis and prove that these structure constants recover D. Cohen's minimal complex from the Aomoto complex.Comment: 16 page

    Classification of states of single-jj fermions with JJ-pairing interaction

    Full text link
    In this paper we show that a system of three fermions is exactly solvable for the case of a single-jj in the presence of an angular momentum-JJ pairing interaction. On the basis of the solutions for this system, we obtain new sum rules for six-jj symbols. It is also found that the "non-integer" eigenvalues of three fermions with angular momentum II around the maximum appear as "non-integer" eigenvalues of four fermions when II is around (or larger than) JmaxJ_{\rm max} and the Hamiltonian contains only an interaction between pairs of fermions coupled to spin J=Jmax=2j1J=J_{\rm max}=2j-1. This pattern is also found in five and six fermion systems. A boson system with spin ll exhibits a similar pattern.Comment: to be published in Physical Review
    corecore