1,364 research outputs found

    Imaging Extended Emission-Line Regions of Obscured AGN with the Subaru Hyper Suprime-Cam Survey

    Full text link
    Narrow-line regions excited by active galactic nuclei (AGN) are important for studying AGN photoionization and feedback. Their strong [O III] lines can be detected with broadband images, allowing morphological studies of these systems with large-area imaging surveys. We develop a new technique to reconstruct the [O III] images using the Subaru Hyper Suprime-Cam (HSC) Survey aided with spectra from the Sloan Digital Sky Survey (SDSS). The technique involves a careful subtraction of the galactic continuum to isolate emission from the [O III]λ\lambda5007 and [O III]λ\lambda4959 lines. Compared to traditional targeted observations, this technique is more efficient at covering larger samples with less dedicated observational resources. We apply this technique to an SDSS spectroscopically selected sample of 300 obscured AGN at redshifts 0.1 - 0.7, uncovering extended emission-line region candidates with sizes up to tens of kpc. With the largest sample of uniformly derived narrow-line region sizes, we revisit the narrow-line region size-luminosity relation. The area and radii of the [O III] emission-line regions are strongly correlated with the AGN luminosity inferred from the mid-infrared (15 μ\mum rest-frame) with a power-law slope of 0.620.06+0.05±0.100.62^{+0.05}_{-0.06} \pm 0.10 (statistical and systemic errors), consistent with previous spectroscopic findings. We discuss the implications for the physics of AGN emission-line region and future applications of this technique, which should be useful for current and next-generation imaging surveys to study AGN photoionization and feedback with large statistical samples.Comment: 20 pages, 13 figures, MNRAS submitte

    Collective Phase Sensitivity

    Full text link
    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.Comment: 6 pages, 3 figure

    Collective dynamical response of coupled oscillators with any network structure

    Full text link
    We formulate a reduction theory that describes the response of an oscillator network as a whole to external forcing applied nonuniformly to its constituent oscillators. The phase description of multiple oscillator networks coupled weakly is also developed. General formulae for the collective phase sensitivity and the effective phase coupling between the oscillator networks are found. Our theory is applicable to a wide variety of oscillator networks undergoing frequency synchronization. Any network structure can systematically be treated. A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure

    Onset of Collective Oscillation in Chemical Turbulence under Global Feedback

    Full text link
    Preceding the complete suppression of chemical turbulence by means of global feedback, a different universal type of transition, which is characterized by the emergence of small-amplitude collective oscillation with strong turbulent background, is shown to occur at much weaker feedback intensity. We illustrate this fact numerically in combination with a phenomenological argument based on the complex Ginzburg-Landau equation with global feedback.Comment: 6 pages, 8 figures; to appear in Phys. Rev.

    The Sloan Digital Sky Survey Reverberation Mapping Project: Post-Starburst Signatures in Quasar Host Galaxies at z < 1

    Full text link
    Quasar host galaxies are key for understanding the relation between galaxies and the supermassive black holes (SMBHs) at their centers. We present a study of 191 broad-line quasars and their host galaxies at z < 1, using high signal-to-noise ratio (SNR) spectra produced by the Sloan Digital Sky Survey Reverberation Mapping project. Clear detection of stellar absorption lines allows a reliable decomposition of the observed spectra into nuclear and host components, using spectral models of quasar and stellar radiations as well as emission lines from the interstellar medium. We estimate age, mass (M*), and velocity dispersion (sigma*) of the host stars, the star formation rate (SFR), quasar luminosity, and SMBH mass (Mbh), for each object. The quasars are preferentially hosted by massive galaxies with M* ~ 10^{11} Msun characterized by stellar ages around a billion years, which coincides with the transition phase of normal galaxies from the blue cloud to the red sequence. The host galaxies have relatively low SFRs and fall below the main sequence of star-forming galaxies at similar redshifts. These facts suggest that the hosts have experienced an episode of major star formation sometime in the past billion years, which was subsequently quenched or suppressed. The derived Mbh - sigma* and Mbh - M* relations agree with our past measurements and are consistent with no evolution from the local Universe. The present analysis demonstrates that reliable measurements of stellar properties of quasar host galaxies are possible with high-SNR fiber spectra, which will be acquired in large numbers with future powerful instruments such as the Subaru Prime Focus Spectrograph.Comment: ApJ in pres
    corecore