38 research outputs found

    Photonic crystal resonator integrated in a microfluidic system

    Full text link
    We report on a novel optofluidic system consisting of a silica-based 1D photonic crystal, integrated planar waveguides and electrically insulated fluidic channels. An array of pillars in a microfluidic channel designed for electrochromatography is used as a resonator for on-column label-free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electroosmotic flow, and operated at 1.55 microns. Different aqueous solutions of ethanol with refractive indices ranging from n = 1.3330 to 1.3616 were pumped into the column/resonator and the transmission spectra were recorded. Linear shifts of the resonant wavelengths yielded a maximum sensitivity of 480 nm/RIU and a minimum difference of 0.007 RIU was measured

    An ultrasensitive young interferometer handheld sensor for rapid virus detection

    No full text
    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive and easy-to-use test for viral infections is essential to prevent and control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote or developing regions without easy access to sophisticated laboratory facilities. In this report we discuss the application of a Young interferometer sensor device for ultrasensitive and real-time detection of viruses. The essential innovation in this technique is the combination of an integrated optical interferometric sensor with antibody-antigen recognition approaches to yield very sensitive, rapid virus detection. The technology is amenable to miniaturization and mass production and, thus, has significant potential to be developed into a handheld, point-of-care device

    Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor

    Get PDF
    This report describes an optical sensing hybrid system obtained by bonding a microfluidic system to an integrated optical (IO) four-channel Young interferometer (YI) chip. The microfluidic system implemented into a glass plate consists of four microchannels with cross-sectional dimensions of 200 μm x 15 pm. The microfluidic system is structured in such a way that after bonding to the IO chip, each microchannel addresses one sensing window in the four-channel YI sensor. Experimental tests show that the implementation of the microfluidics reduces the response time of the sensor from 100s, as achieved with a bulky cuvette, to 4s. Monitoring the anti-human serum albumine/human serum albumine (α-HSAIHSA) immunoreaction demonstrates the feasibility to use the microfluidic sensing system for immunosensing applications. In this case, a better discrimination between the bulk refractive index change and the layer formation can be made, resulting into higher accuracy and offering the prospect of being able to use the kinetics of the immunoreaction. The microfluidic sensing system shows an average phase resolution of 7 x 10510^{-5} x 2π for different pairs of channels, which at the given interaction length of 4mm corresponds to a refractive index resolution of 6 x l08l0^{-8}, being equivalent to a protein mass coverage resolution of 20 fg/mm2fg/mm^2
    corecore