13,311 research outputs found
Quantum trajectories for time-dependent adiabatic master equations
We develop a quantum trajectories technique for the unraveling of the quantum
adiabatic master equation in Lindblad form. By evolving a complex state vector
of dimension instead of a complex density matrix of dimension ,
simulations of larger system sizes become feasible. The cost of running many
trajectories, which is required to recover the master equation evolution, can
be minimized by running the trajectories in parallel, making this method
suitable for high performance computing clusters. In general, the trajectories
method can provide up to a factor advantage over directly solving the
master equation. In special cases where only the expectation values of certain
observables are desired, an advantage of up to a factor is possible. We
test the method by demonstrating agreement with direct solution of the quantum
adiabatic master equation for -qubit quantum annealing examples. We also
apply the quantum trajectories method to a -qubit example originally
introduced to demonstrate the role of tunneling in quantum annealing, which is
significantly more time consuming to solve directly using the master equation.
The quantum trajectories method provides insight into individual quantum jump
trajectories and their statistics, thus shedding light on open system quantum
adiabatic evolution beyond the master equation.Comment: 17 pages, 7 figure
ac Josephson effect in asymmetric superconducting quantum point contacts
We investigate ac Josephson effects between two superconductors connected by
a single-mode quantum point contact, where the gap amplitudes in the two
superconductors are unequal. In these systems, it was found in previous studies
on the dc effects that, besides the Andreev bound-states, the continuum states
can also contribute to the current. Using the quasiclassical formulation, we
calculate the current-voltage characteristics for general transmission of
the point contact. To emphasize bound versus continuum states, we examine in
detail the low bias, ballistic (D=1) limit. It is shown that in this limit the
current-voltage characteristics can be determined from the current-phase
relation, if we pay particular attention to the different behaviors of these
states under the bias voltage. For unequal gap configurations, the continuum
states give rise to non-zero sine components. We also demonstrate that in this
limit the temperature dependence of the dc component follows
, where is the smaller gap, with the
contribution coming entirely from the bound state.Comment: To appear in PR
Chemochemical caries removal: a review of the techniques and latest developments
Chemomechanical caries removal involves the chemical softening of carious dentine followed by its removal by gentle excavation. The reagent involved is generated by mixing amino acids with sodium hypochlorite; N-monochloroamino acids are formed which selectively degrade demineralised collagen in carious dentine. The procedure requires 5-15 minutes but avoids the painful removal of sound dentine thereby reducing the need for local anaesthesia. It is well suited to the treatment of deciduous teeth, dental phobics and medically compromised patients. The dentine surface formed is highly irregular and well suited to bonding with composite resin or glass ionomer. When complete caries removal is achieved, the dentine remaining is sound and properly mineralised. The system was originally marketed in the USA in the 1980's as Caridex. Large volumes of solution and a special applicator system were required. A new system, Carisolv, has recently been launched on to the market. This comes as a gel, requires volumes of 0.2-1.0 ml and is accompanied by specially designed instruments
An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners
This paper describes the design, manufacture, and performance of a highly
dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided
percutaneous needle biopsy. Direct CT guidance allows physicians to localize
tumours quickly; however, needle insertion is still performed by hand. This
system is mounted to a fully active gantry superior to the patient's head and
teleoperated by a radiologist. Unlike other similar robots, this robot's fully
serial-link approach uses a unique combination of belt and cable drives for
high-transparency and minimal-backlash, allowing for an expansive working area
and numerous approach angles to targets all while maintaining a small in-bore
cross-section of less than . Simulations verified the system's
expansive collision free work-space and ability to hit targets across the
entire chest, as required for lung cancer biopsy. Targeting error is on average
on a teleoperated accuracy task, illustrating the system's sufficient
accuracy to perform biopsy procedures. The system is designed for lung biopsies
due to the large working volume that is required for reaching peripheral lung
lesions, though, with its large working volume and small in-bore
cross-sectional area, the robotic system is effectively a general-purpose
CT-compatible manipulation device for percutaneous procedures. Finally, with
the considerable development time undertaken in designing a precise and
flexible-use system and with the desire to reduce the burden of other
researchers in developing algorithms for image-guided surgery, this system
provides open-access, and to the best of our knowledge, is the first
open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201
Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors
We use the quasiclassical theory of superconductivity to calculate the
electronic contribution to the thermal conductivity. The theory is formulated
for low temperatures when heat transport is limited by electron scattering from
random defects and for superconductors with nodes in the order parameter. We
show that certain eigenvalues of the thermal conductivity tensor are universal
at low temperature, , where is the bandwidth of
impurity bound states in the superconducting phase. The components of the
electrical and thermal conductivity also obey a Wiedemann-Franz law with the
Lorenz ratio, , given by the Sommerfeld value of
for . For intermediate
temperatures the Lorenz ratio deviates significantly from , and is
strongly dependent on the scattering cross section, and qualitatively different
for resonant vs.\ nonresonant scattering. We include comparisons with other
theoretical calculations and the thermal conductivity data for the high
cuprate and heavy fermion superconductors.Comment: 17 pages, PostScript file compressed and uuencode
Synthesis of H<sub>x</sub>Li<sub>1-x</sub>LaTiO<sub>4</sub> from quantitative solid-state reactions at room temperature
The layered perovskite HLaTiO4 reacts stoichiometrically with LiOH·H2O at room temperature to give targeted compositions in the series HxLi1-xLaTiO4. Remarkably, the Li+ and H+ ions are quantitatively exchanged in the solid state and this allows stoichiometric control of ion exchange for the first time in this important series of compounds
- …
