108 research outputs found
Pattern Formation Induced by Time-Dependent Advection
We study pattern-forming instabilities in reaction-advection-diffusion
systems. We develop an approach based on Lyapunov-Bloch exponents to figure out
the impact of a spatially periodic mixing flow on the stability of a spatially
homogeneous state. We deal with the flows periodic in space that may have
arbitrary time dependence. We propose a discrete in time model, where reaction,
advection, and diffusion act as successive operators, and show that a mixing
advection can lead to a pattern-forming instability in a two-component system
where only one of the species is advected. Physically, this can be explained as
crossing a threshold of Turing instability due to effective increase of one of
the diffusion constants
Identification and Characterization of Two Functionally Unknown Genes Involved in Butanol Tolerance of Clostridium acetobutylicum
Solvents toxicity is a major limiting factor hampering the cost-effective biotechnological production of chemicals. In Clostridium acetobutylicum, a functionally unknown protein (encoded by SMB_G1518) with a hypothetical alcohol interacting domain was identified. Disruption of SMB_G1518 and/or its downstream gene SMB_G1519 resulted in increased butanol tolerance, while overexpression of SMB_G1518-1519 decreased butanol tolerance. In addition, SMB_G1518-1519 also influences the production of pyruvate:ferredoxin oxidoreductase (PFOR) and flagellar protein hag, the maintenance of cell motility. We conclude that the system of SMB_G1518-1519 protein plays a role in the butanol sensitivity/tolerance phenotype of C. acetobutylicum, and can be considered as potential targets for engineering alcohol tolerance
mRNA Secondary Structures Fold Sequentially But Exchange Rapidly In Vivo
Self-cleavage assays of RNA folding reveal that mRNA structures fold sequentially in vitro and in vivo, but exchange between adjacent structures is much faster in vivo than it is in vitro
Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates
Comparing the latitudinal distribution of the Pc1 intensity and the position of subauroral proton spots
Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader
NusA and NusG are transcription elongation factors that bind to RNA polymerase (RNAP) after σ subunit release. Escherichia coli NusA (NusAEc) stimulates intrinsic termination and RNAPEc pausing, whereas NusGEc promotes Rho-dependent termination and pause escape. Both Nus factors also participate in the formation of RNAPEc antitermination complexes. We showed that Bacillus subtilis NusA (NusABs) stimulates intrinsic termination and RNAPBs pausing at U107 and U144 in the trpEDCFBA operon leader. Pausing at U107 and U144 participates in the transcription attenuation and translational control mechanisms, respectively, presumably by providing additional time for trp RNA-binding attenuation protein (TRAP) to bind to the nascent trp leader transcript. Here, we show that NusGBs causes modest pause stimulation at U107 and dramatic pause stimulation at U144. NusABs and NusGBs act synergistically to increase the U107 and U144 pause half-lives. NusGBs-stimulated pausing at U144 requires RNAPBs, whereas NusABs stimulates pausing of RNAPBs and RNAPEc at the U144 and E. coli his pause sites. Although NusGEc does not stimulate pausing at U144, it competes with NusGBs-stimulated pausing, suggesting that both proteins bind to the same surface of RNAPBs. Inactivation of nusG results in the loss of RNAP pausing at U144 in vivo and elevated trp operon expression, whereas plasmid-encoded NusG complements the mutant defects. Overexpression of nusG reduces trp operon expression to a larger extent than overexpression of nusA
Characterization of TRAP-Mediated Regulation of the B. subtilis trp Operon Using In Vitro Transcription and Transcriptional Reporter Fusions In Vivo
- …
