108 research outputs found

    Pattern Formation Induced by Time-Dependent Advection

    Full text link
    We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that a mixing advection can lead to a pattern-forming instability in a two-component system where only one of the species is advected. Physically, this can be explained as crossing a threshold of Turing instability due to effective increase of one of the diffusion constants

    Identification and Characterization of Two Functionally Unknown Genes Involved in Butanol Tolerance of Clostridium acetobutylicum

    Get PDF
    Solvents toxicity is a major limiting factor hampering the cost-effective biotechnological production of chemicals. In Clostridium acetobutylicum, a functionally unknown protein (encoded by SMB_G1518) with a hypothetical alcohol interacting domain was identified. Disruption of SMB_G1518 and/or its downstream gene SMB_G1519 resulted in increased butanol tolerance, while overexpression of SMB_G1518-1519 decreased butanol tolerance. In addition, SMB_G1518-1519 also influences the production of pyruvate:ferredoxin oxidoreductase (PFOR) and flagellar protein hag, the maintenance of cell motility. We conclude that the system of SMB_G1518-1519 protein plays a role in the butanol sensitivity/tolerance phenotype of C. acetobutylicum, and can be considered as potential targets for engineering alcohol tolerance

    Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader

    No full text
    NusA and NusG are transcription elongation factors that bind to RNA polymerase (RNAP) after σ subunit release. Escherichia coli NusA (NusAEc) stimulates intrinsic termination and RNAPEc pausing, whereas NusGEc promotes Rho-dependent termination and pause escape. Both Nus factors also participate in the formation of RNAPEc antitermination complexes. We showed that Bacillus subtilis NusA (NusABs) stimulates intrinsic termination and RNAPBs pausing at U107 and U144 in the trpEDCFBA operon leader. Pausing at U107 and U144 participates in the transcription attenuation and translational control mechanisms, respectively, presumably by providing additional time for trp RNA-binding attenuation protein (TRAP) to bind to the nascent trp leader transcript. Here, we show that NusGBs causes modest pause stimulation at U107 and dramatic pause stimulation at U144. NusABs and NusGBs act synergistically to increase the U107 and U144 pause half-lives. NusGBs-stimulated pausing at U144 requires RNAPBs, whereas NusABs stimulates pausing of RNAPBs and RNAPEc at the U144 and E. coli his pause sites. Although NusGEc does not stimulate pausing at U144, it competes with NusGBs-stimulated pausing, suggesting that both proteins bind to the same surface of RNAPBs. Inactivation of nusG results in the loss of RNAP pausing at U144 in vivo and elevated trp operon expression, whereas plasmid-encoded NusG complements the mutant defects. Overexpression of nusG reduces trp operon expression to a larger extent than overexpression of nusA
    corecore