38 research outputs found

    Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study

    Get PDF
    Abstract Background Peripheral nerve stimulation has been used for decades to treat chronic pain but has not been used for postoperative analgesia due to multiple limitations, beginning with invasive electrode placement. With the development of small-diameter/gauge leads enabling percutaneous insertion, ultrasound guidance for accurate introduction, and stimulators small enough to be adhered to the skin, neurostimulation may now be provided in a similar manner to continuous peripheral nerve blocks. Here, we report on the use of ultrasound-guided percutaneous peripheral nerve stimulation to treat postoperative pain. Materials and methods Subjects within 60 days of a total knee arthroplasty with pain insufficiently treated with oral analgesics had a 0.2-mm-diameter electrical lead (pre-loaded into a 20 gauge needle) introduced percutaneously using ultrasound guidance with the tip located approximately 0.5–1.0 cm from the femoral nerve (a second lead was inserted approximately 1.0–3.0 cm from the sciatic nerve for posterior knee pain). An external stimulator delivered current. Endpoints were assessed before and after lead insertion and the leads subsequently removed. Due to the small sample size for this pilot/feasibility study, no statistics were applied to the data. Results Leads were inserted in subjects (n = 5) 8–58 days postoperatively. Percutaneous peripheral nerve stimulation decreased pain an average of 93% at rest (from a mean of 5.0 to 0.2 on a 0–10 numeric rating scale), with 4 of 5 subjects experiencing complete resolution of pain. During passive and active knee motion pain decreased an average of 27 and 30%, respectively. Neither maximum passive nor active knee range-of-motion was consistently affected. Conclusions Ultrasound-guided percutaneous peripheral nerve stimulation may be a practical modality for the treatment of postoperative pain following orthopedic surgical procedures, and further investigation appears warranted

    Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study

    Get PDF
    Abstract Background Peripheral nerve stimulation has been used for decades to treat chronic pain but has not been used for postoperative analgesia due to multiple limitations, beginning with invasive electrode placement. With the development of small-diameter/gauge leads enabling percutaneous insertion, ultrasound guidance for accurate introduction, and stimulators small enough to be adhered to the skin, neurostimulation may now be provided in a similar manner to continuous peripheral nerve blocks. Here, we report on the use of ultrasound-guided percutaneous peripheral nerve stimulation to treat postoperative pain. Materials and methods Subjects within 60 days of a total knee arthroplasty with pain insufficiently treated with oral analgesics had a 0.2-mm-diameter electrical lead (pre-loaded into a 20 gauge needle) introduced percutaneously using ultrasound guidance with the tip located approximately 0.5–1.0 cm from the femoral nerve (a second lead was inserted approximately 1.0–3.0 cm from the sciatic nerve for posterior knee pain). An external stimulator delivered current. Endpoints were assessed before and after lead insertion and the leads subsequently removed. Due to the small sample size for this pilot/feasibility study, no statistics were applied to the data. Results Leads were inserted in subjects (n = 5) 8–58 days postoperatively. Percutaneous peripheral nerve stimulation decreased pain an average of 93% at rest (from a mean of 5.0 to 0.2 on a 0–10 numeric rating scale), with 4 of 5 subjects experiencing complete resolution of pain. During passive and active knee motion pain decreased an average of 27 and 30%, respectively. Neither maximum passive nor active knee range-of-motion was consistently affected. Conclusions Ultrasound-guided percutaneous peripheral nerve stimulation may be a practical modality for the treatment of postoperative pain following orthopedic surgical procedures, and further investigation appears warranted

    Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s) and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations.</p> <p>Methods</p> <p>A finite element model (FEM) of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs) along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats.</p> <p>Results</p> <p>Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration.</p> <p>Conclusions</p> <p>A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.</p

    Neurostimulation for Postsurgical Analgesia: A Novel System Enabling Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation.

    No full text
    While neurostimulation-stimulation of the nervous system using electrical current-has been used to treat chronic pain, its use treating postsurgical pain has been limited. Here, we report on the clinical application of a novel investigational lead to provide analgesia following total knee arthroplasty. In 5 subjects, leads were inserted percutaneously using ultrasound guidance within 0.5 to 3.0 cm of the femoral and/or sciatic nerve(s). With the delivery of current, pain decreased an average of 63% at rest, with 4 of 5 subjects having relief of &gt; 50%. During passive and active knee flexion, pain decreased an average of 14% and 50%, with 0/3 and 1/2 subjects attaining &gt; 50% relief, respectively. Ultrasound-guided percutaneous peripheral nerve stimulation may be a practical modality for the treatment of postsurgical pain

    Infection Rates of Electrical Leads Used for Percutaneous Neurostimulation of the Peripheral Nervous System.

    No full text
    BackgroundPercutaneous neurostimulation of the peripheral nervous system involves the insertion of a wire "lead" through an introducing needle to target a nerve/plexus or a motor point within a muscle. Electrical current may then be passed from an external generator through the skin via the lead for various therapeutic goals, including providing analgesia. With extended use of percutaneous leads sometimes greater than a month, infection is a concern. It was hypothesized that the infection rate of leads with a coiled design is lower than for leads with a noncoiled cylindrical design.MethodsThe literature was retrospectively reviewed for clinical studies of percutaneous neurostimulation of the peripheral nervous system of greater than 2 days that included explicit information on adverse events. The primary endpoint was the number of infections per 1,000 indwelling days.ResultsForty-three studies were identified that met inclusion criteria involving coiled (n = 21) and noncoiled (n = 25) leads (3 studies involved both). The risk of infection with noncoiled leads was estimated to be 25 times greater than with coiled leads (95% confidence interval [CI] 2 to 407, P = 0.006). The infection rates were estimated to be 0.03 (95% CI 0.01 to 0.13) infections per 1,000 indwelling days for coiled leads and 0.83 (95% CI 0.16 to 4.33) infections per 1,000 indwelling days for noncoiled leads (P = 0.006).ConclusionsPercutaneous leads used for neurostimulation of the peripheral nervous system have a much lower risk of infection with a coiled design compared with noncoiled leads: approximately 1 infection for every 30,000 vs. 1,200 indwelling days, respectively
    corecore