108,325 research outputs found
Propagation of ion acoustic waves along cylindrical plasma columns
Propagation of ion acoustic waves along cylindrical plasma columns - transverse boundary condition
Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood
Recent likelihood theory produces -values that have remarkable accuracy
and wide applicability. The calculations use familiar tools such as maximum
likelihood values (MLEs), observed information and parameter rescaling. The
usual evaluation of such -values is by simulations, and such simulations do
verify that the global distribution of the -values is uniform(0, 1), to high
accuracy in repeated sampling. The derivation of the -values, however,
asserts a stronger statement, that they have a uniform(0, 1) distribution
conditionally, given identified precision information provided by the data. We
take a simple regression example that involves exact precision information and
use large sample techniques to extract highly accurate information as to the
statistical position of the data point with respect to the parameter:
specifically, we examine various -values and Bayesian posterior survivor
-values for validity. With observed data we numerically evaluate the various
-values and -values, and we also record the related general formulas. We
then assess the numerical values for accuracy using Markov chain Monte Carlo
(McMC) methods. We also propose some third-order likelihood-based procedures
for obtaining means and variances of Bayesian posterior distributions, again
followed by McMC assessment. Finally we propose some adaptive McMC methods to
improve the simulation acceptance rates. All these methods are based on
asymptotic analysis that derives from the effect of additional data. And the
methods use simple calculations based on familiar maximizing values and related
informations. The example illustrates the general formulas and the ease of
calculations, while the McMC assessments demonstrate the numerical validity of
the -values as percentage position of a data point. The example, however, is
very simple and transparent, and thus gives little indication that in a wide
generality of models the formulas do accurately separate information for almost
any parameter of interest, and then do give accurate -value determinations
from that information. As illustration an enigmatic problem in the literature
is discussed and simulations are recorded; various examples in the literature
are cited.Comment: Published in at http://dx.doi.org/10.1214/07-STS240 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Random Feature Maps via a Layered Random Projection (LaRP) Framework for Object Classification
The approximation of nonlinear kernels via linear feature maps has recently
gained interest due to their applications in reducing the training and testing
time of kernel-based learning algorithms. Current random projection methods
avoid the curse of dimensionality by embedding the nonlinear feature space into
a low dimensional Euclidean space to create nonlinear kernels. We introduce a
Layered Random Projection (LaRP) framework, where we model the linear kernels
and nonlinearity separately for increased training efficiency. The proposed
LaRP framework was assessed using the MNIST hand-written digits database and
the COIL-100 object database, and showed notable improvement in object
classification performance relative to other state-of-the-art random projection
methods.Comment: 5 page
- …