8,512 research outputs found
Optimal Measurements for Tests of EPR-Steering with No Detection Loophole using Two-Qubit Werner States
It has been shown in earlier works that the vertices of Platonic solids are
good measurement choices for tests of EPR-steering using isotropically
entangled pairs of qubits. Such measurements are regularly spaced, and
measurement diversity is a good feature for making EPR-steering inequalities
easier to violate in the presence of experimental imperfections. However, such
measurements are provably suboptimal. Here, we develop a method for devising
optimal strategies for tests of EPR-steering, in the sense of being most robust
to mixture and inefficiency (while still closing the detection loophole of
course), for a given number of measurement settings. We allow for arbitrary
measurement directions, and arbitrary weightings of the outcomes in the
EPR-steering inequality. This is a difficult optimization problem for large
, so we also consider more practical ways of constructing near-optimal
EPR-steering inequalities in this limit.Comment: 15 pages, 11 Figure
The entanglement of indistinguishable particles shared between two parties
Using an operational definition we quantify the entanglement, , between
two parties who share an arbitrary pure state of indistinguishable
particles. We show that , where is the bipartite
entanglement calculated from the mode-occupation representation. Unlike ,
is {\em super-additive}. For example, for any single-particle
state, but the state , where both modes are split between the
two parties, has . We discuss how this relates to quantum
correlations between particles, for both fermions and bosons.Comment: 4 + epsilon pages. No figures. This published version is slightly
modified from the origina
Entanglement of identical particles and reference phase uncertainty
We have recently introduced a measure of the bipartite entanglement of
identical particles, E_P, based on the principle that entanglement should be
accessible for use as a resource in quantum information processing. We show
here that particle entanglement is limited by the lack of a reference phase
shared by the two parties, and that the entanglement is constrained to
reference-phase invariant subspaces. The super-additivity of E_P results from
the fact that this constraint is weaker for combined systems. A shared
reference phase can only be established by transferring particles between the
parties, that is, with additional nonlocal resources. We show how this nonlocal
operation can increase the particle entanglement.Comment: 8 pages, no figures. Invited talk given at EQIS'03, Kyoto, September,
2003. Minor typos corrected, 1 reference adde
Two-dimensional Site-Bond Percolation as an Example of Self-Averaging System
The Harris-Aharony criterion for a statistical model predicts, that if a
specific heat exponent , then this model does not exhibit
self-averaging. In two-dimensional percolation model the index .
It means that, in accordance with the Harris-Aharony criterion, the model can
exhibit self-averaging properties. We study numerically the relative variances
and for the probability of a site belongin to the
"infinite" (maximum) cluster and the mean finite cluster size . It was
shown, that two-dimensional site-bound percolation on the square lattice, where
the bonds play the role of impurity and the sites play the role of the
statistical ensemble, over which the averaging is performed, exhibits
self-averaging properties.Comment: 15 pages, 5 figure
Adaptive Phase Measurements in Linear Optical Quantum Computation
Photon counting induces an effective nonlinear optical phase shift on certain
states derived by linear optics from single photons. Although this no
nlinearity is nondeterministic, it is sufficient in principle to allow scalable
linear optics quantum computation (LOQC). The most obvious way to encode a
qubit optically is as a superposition of the vacuum and a single photon in one
mode -- so-called "single-rail" logic. Until now this approach was thought to
be prohibitively expensive (in resources) compared to "dual-rail" logic where a
qubit is stored by a photon across two modes. Here we attack this problem with
real-time feedback control, which can realize a quantum-limited phase
measurement on a single mode, as has been recently demonstrated experimentally.
We show that with this added measurement resource, the resource requirements
for single-rail LOQC are not substantially different from those of dual-rail
LOQC. In particular, with adaptive phase measurements an arbitrary qubit state
can be prepared deterministically
Recommended from our members
Assessment of sexual difficulties associated with multi-modal treatment for cervical or endometrial cancer: A systematic review of measurement instruments
Background: Practitioners and researchers require an outcome measure that accurately identifies the range of common treatment-induced changes in sexual function and well-being experienced by women after cervical or endometrial cancer. This systematic review critically appraised the measurement properties and clinical utility of instruments validated for the measurement of female sexual dysfunction (FSD) in this clinical population.
Methods: A bibliographic database search for questionnaire development or validation papers was completed and methodological quality and measurement properties of selected studies rated using the Consensus-based Standards for the selection of health Measurement Instrument (COSMIN) checklist.
Results: 738 articles were screened, 13 articles retrieved for full text assessment and 7 studies excluded, resulting in evaluation of 6 papers; 2 QoL and 4 female sexual morbidity measures.
Five of the six instruments omitted one or more dimension of female sexual function and only one instrument explicitly measured distress associated with sexual changes as per DSM V (APA 2013) diagnostic criteria.
None of the papers reported measurement error, responsiveness data was available for only two instruments, three papers failed to report on criterion validity, and test-retest reliability reporting was inconsistent. Heterosexual penile-vaginal intercourse remains the dominant sexual activity focus for sexual morbidity PROMS terminology and instruments lack explicit reference to solo or non-coital sexual expression or validation in a non-heterosexual sample. Four out of six instruments included mediating treatment or illness items such as vaginal changes, menopause or altered body image.
Conclusions: Findings suggest that the Female Sexual Function Index (FSFI) remains the most robust sexual morbidity outcome measure, for research or clinical use, in sexually active women treated for cervical or endometrial cancer
Entanglement under restricted operations: Analogy to mixed-state entanglement
We show that the classification of bi-partite pure entangled states when
local quantum operations are restricted yields a structure that is analogous in
many respects to that of mixed-state entanglement. Specifically, we develop
this analogy by restricting operations through local superselection rules, and
show that such exotic phenomena as bound entanglement and activation arise
using pure states in this setting. This analogy aids in resolving several
conceptual puzzles in the study of entanglement under restricted operations. In
particular, we demonstrate that several types of quantum optical states that
possess confusing entanglement properties are analogous to bound entangled
states. Also, the classification of pure-state entanglement under restricted
operations can be much simpler than for mixed-state entanglement. For instance,
in the case of local Abelian superselection rules all questions concerning
distillability can be resolved.Comment: 10 pages, 2 figures; published versio
Ferreting out the Fluffy Bunnies: Entanglement constrained by Generalized superselection rules
Entanglement is a resource central to quantum information (QI). In
particular, entanglement shared between two distant parties allows them to do
certain tasks that would otherwise be impossible. In this context, we study the
effect on the available entanglement of physical restrictions on the local
operations that can be performed by the two parties. We enforce these physical
restrictions by generalized superselection rules (SSRs), which we define to be
associated with a given group of physical transformations. Specifically the
generalized SSR is that the local operations must be covariant with respect to
that group. Then we operationally define the entanglement constrained by a SSR,
and show that it may be far below that expected on the basis of a naive (or
``fluffy bunny'') calculation. We consider two examples. The first is a
particle number SSR. Using this we show that for a two-mode BEC (with Alice
owning mode and Bob mode ), the useful entanglement shared by Alice and
Bob is identically zero. The second, a SSR associated with the symmetric group,
is applicable to ensemble QI processing such as in liquid-NMR. We prove that
even for an ensemble comprising many pairs of qubits, with each pair described
by a pure Bell state, the entanglement per pair constrained by this SSR goes to
zero for a large ensemble.Comment: 8 pages, proceedings paper for an invited talk at 16th International
Conference on Laser Spectroscopy (2003
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
- …
