80 research outputs found

    Ensuring message embedding in wet paper steganography

    Get PDF
    International audienceSyndrome coding has been proposed by Crandall in 1998 as a method to stealthily embed a message in a cover-medium through the use of bounded decoding. In 2005, Fridrich et al. introduced wet paper codes to improve the undetectability of the embedding by nabling the sender to lock some components of the cover-data, according to the nature of the cover-medium and the message. Unfortunately, almost all existing methods solving the bounded decoding syndrome problem with or without locked components have a non-zero probability to fail. In this paper, we introduce a randomized syndrome coding, which guarantees the embedding success with probability one. We analyze the parameters of this new scheme in the case of perfect codes

    Minimising treatment-associated risks in systemic cancer therapy

    Get PDF
    Aim of the review To review the consequences of drug-related problems (DRP) in systemic cancer therapy and identify specific contributions of the pharmacist to minimise treatment-associated risks. Method Searches in PubMed, Embase and the Cochrane Library were conducted. Bibliographies of retrieved articles were examined for additional references. Only papers in English between 1980 and 2007 were included. Results In systemic cancer therapy there is an enormous potential for DRP due to the high toxicity and the complexity of most therapeutic regimens. The most frequently reported DRP can be classified into adverse effects, drug–drug interactions, medication errors, and non-adherence. Pharmacists have enhanced efforts to assure quality and safety in systemic cancer therapy together with other health care providers. In consequence, oncology pharmacy has evolved as a novel specialist discipline. The endeavour to merge and co-ordinate individual activities and services of the pharmacist has led to pharmaceutical care concepts which aim at offering novel solutions to the various DRP. Conclusion Pharmaceutical care for cancer patients should be developed within research projects and integrated into disease management programs in order to ensure broad implementation

    F5—A Steganographic Algorithm

    No full text

    Improved detection of LSB steganography in grayscale images

    No full text
    Abstract. We consider methods for answering reliably the question of whether an image contains hidden data; the focus is on grayscale bitmap images and simple LSB steganography. Using a distributed computation network and a library of over 30,000 images we have been carefully evaluating the reliability of various steganalysis methods. The results suggest a number of improvements to the standard techiques, with particular benefits gained by not attempting to estimate the hidden message length. Extensive experimentation shows that the improved methods allow reliable detection of LSB steganography with between 2 and 6 times smaller embedded messages.

    An Advanced Least-Significant-Bit Embedding Scheme for Steganographic Encoding

    No full text

    Steganography with Least Histogram Abnormality

    No full text

    A graph theoretic approach to steganography

    No full text
    Abstract. We suggest a graph-theoretic approach to steganography based on the idea of exchanging rather than overwriting pixels. We construct a graph from the cover data and the secret message. Pixels that need to be modified are represented as vertices and possible partners of an exchange are connected by edges. An embedding is constructed by solving the combinatorial problem of calculating a maximum cardinality matching. The secret message is then embedded by exchanging those samples given by the matched edges. This embedding preserves first-order statistics. Additionally, the visual changes can be minimized by introducing edge weights. We have implemented an algorithm based on this approach with support for several types of image and audio files and we have conducted computational studies to evaluate the performance of the algorithm
    • 

    corecore