1,310 research outputs found

    Spherically Symmetric, Self-Similar Spacetimes

    Get PDF
    Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.Comment: Submitted to Physical Review Letter

    Measuring Pancharatnam's relative phase for SO(3) evolutions using spin polarimetry

    Full text link
    In polarimetry, a superposition of internal quantal states is exposed to a single Hamiltonian and information about the evolution of the quantal states is inferred from projection measurements on the final superposition. In this framework, we here extend the polarimetric test of Pancharatnam's relative phase for spin1/2-{1/2} proposed by Wagh and Rakhecha [Phys. Lett. A {\bf 197}, 112 (1995)] to spin j1j\geq 1 undergoing noncyclic SO(3) evolution. We demonstrate that the output intensity for higher spin values is a polynomial function of the corresponding spin1/2-{1/2} intensity. We further propose a general method to extract the noncyclic SO(3) phase and visibility by rigid translation of two π/2\pi /2 spin flippers. Polarimetry on higher spin states may in practice be done with spin polarized atomic beams.Comment: New title, minor corrections, journal reference adde

    Buying Practices and Prevalence of Adulteration in Selected Food items in a Rural Area of Wardha District: A Cross - Sectional Study

    Get PDF
    Introduction: Food adulteration in India includes both willful adulteration and substandard food which do not confirm to prescribe food standard. There is striking paucity of reliable data with regard to extent of adulteration and documentation of food borne illnesses reflecting lack of attention and focus on this problem. Objectives: To find the prevalence of food adulteration, buying practices of selected food items and their awareness towards food adulteration act. Also assess relationship between per-capita incomes, education of respondents, and food borne illnesses with magnitude of adulteration in each house-hold. Methods: With the best estimate of 50%, sample size comes to 89. By stratifying the village according to social strata and randomly selecting the households with PPS. Questionnaire was administered to fulfill our objectives and food items were tested. Data analyzed by numeral with percentage, Pearson moment correlation, F test and chi square test. Results: In 68.5% Households, wife (home-maker) buys the grocery. Majority of them never read the food labels. All the selected food items were adulterated ranging from 76 % to 11%. Mean percentage of purity was highest in literates (47.5 ± 22.48) than illiterates and just literates. Food borne illness was prevalent in households with low purity of food. Association was found between per capita income and percentage of purity (0.765)

    Charged particles in a rotating magnetic field

    Get PDF
    We study the valence electron of an alkaline atom or a general charged particle with arbitrary spin and with magnetic moment moving in a rotating magnetic field. By using a time-dependent unitary transformation, the Schr\"odinger equation with the time-dependent Hamiltonian can be reduced to a Schr\"odinger-like equation with a time-independent effective Hamiltonian. Eigenstates of the effective Hamiltonian correspond to cyclic solutions of the original Schr\"odinger equation. The nonadiabatic geometric phase of a cyclic solution can be expressed in terms of the expectation value of the component of the total angular momentum along the rotating axis, regardless of whether the solution is explicitly available. For the alkaline atomic electron and a strong magnetic field, the eigenvalue problem of the effective Hamiltonian is completely solved, and the geometric phase turns out to be a linear combination of two solid angles. For a weak magnetic field, the same problem is solved partly. For a general charged particle, the problem is solved approximately in a slowly rotating magnetic field, and the geometric phases are also calculated.Comment: REVTeX, 13 pages, no figure. There are two minor errors in the published version due to incorrect editing by the publisher. The "spin-1" in Sec. I and the "spin 1" in Sec. II below Eq. (2c) should both be changed to "spin" or "spin angular momentum". The preferred E-mail for correspondence is [email protected] or [email protected]

    Observation of off-diagonal geometric phase in polarized neutron interferometer experiments

    Full text link
    Off-diagonal geometric phases acquired in the evolution of a spin-1/2 system have been investigated by means of a polarized neutron interferometer. Final counts with and without polarization analysis enable us to observe simultaneously the off-diagonal and diagonal geometric phases in two detectors. We have quantitatively measured the off-diagonal geometric phase for noncyclic evolutions, confirming the theoretical predictions. We discuss the significance of our experiment in terms of geometric phases (both diagonal and off-diagonal) and in terms of the quantum erasing phenomenon.Comment: pdf, 22 pages + 8 figures (included in the pdf). In print on Phys. Rev.

    Gravitational Collapse of Null Radiation and a String fluid

    Get PDF
    We consider the end state of collapsing null radiation with a string fluid. It is shown that, if diffusive transport is assumed for the string, that a naked singularity can form (at least locally). The model has the advantage of not being asymptotically flat. We also analyse the case of a radiation-string two-fluid and show that a locally naked singularity can result in the collapse of such matter. We contrast this model with that of strange quark matter.Comment: RevTeX 4.0 (8 pages - no figures). submitted to Phys Rev D. Some changes to abstract, introduction and conclusion - references update

    Geometric Phases and Multiple Degeneracies in Harmonic Resonators

    Full text link
    In a recent experiment Lauber et al. have deformed cyclically a microwave resonator and have measured the adiabatic normal-mode wavefunctions for each shape along the path of deformation. The nontrivial observed cyclic phases around a 3-fold degeneracy were accounted for by Manolopoulos and Child within an approximate theory. However, open-path geometrical phases disagree with experiment. By solving exactly the problem, we find unsuspected extra degeneracies around the multiple one that account for the measured phase changes throughout the path. It turns out that proliferation of additional degeneracies around a multiple one is a common feature of quantum mechanics.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Let

    Equilibration problem for the generalized Langevin equation

    Get PDF
    We consider the problem of equilibration of a single oscillator system with dynamics given by the generalized Langevin equation. It is well-known that this dynamics can be obtained if one considers a model where the single oscillator is coupled to an infinite bath of harmonic oscillators which are initially in equilibrium. Using this equivalence we first determine the conditions necessary for equilibration for the case when the system potential is harmonic. We then give an example with a particular bath where we show that, even for parameter values where the harmonic case always equilibrates, with any finite amount of nonlinearity the system does not equilibrate for arbitrary initial conditions. We understand this as a consequence of the formation of nonlinear localized excitations similar to the discrete breather modes in nonlinear lattices.Comment: 5 pages, 2 figure
    corecore