41,352 research outputs found

    Solvation forces in Ising films with long-range boundary fields: density-matrix renormalization-group study

    Full text link
    Using the quasi-exact density-matrix renormalization-group method we calculate the solvation forces in two-dimensional Ising films of thickness L subject to identical algebraically decaying boundary fields with various decay exponents p. At the bulk critical point the solvation force acquires a universal contribution which is long-ranged in L due to the critical fluctuations, a phenomenon known as the critical Casimir effect. For p = 2, 3 and 50, we study the scaling behaviour of the solvation force along the pseudo-phase coexistence and along the critical and sub-critical isotherms.Comment: 9 pages, 6 figures, accepted to Molecular Physic

    Exotic paired phases in ladders with spin-dependent hopping

    Full text link
    Fermions in two-dimensions (2D) when subject to anisotropic spin-dependent hopping can potentially give rise to unusual paired states in {\it unpolarized} mixtures that can behave as non-Fermi liquids. One possibility is a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a "Cooper-pair Bose-metal" phase would be expected to have a singular Bose-surface in momentum space. As demonstrated in the context of 2D bosons hopping with a frustrating ring-exchange interaction, an analogous Bose-metal phase has a set of quasi-1D descendent states when put on a ladder geometry. Here we present a density matrix renormalization group (DMRG) study of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a conventional superfluid phase, as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the one found in models of hard-core bosons with ring-exchange. We argue that simulating this model with cold Fermi gases on spin dependent optical lattices is a promising direction for realizing exotic quantum states.Comment: 10 pages, 12 figure

    Isospin fractionation and isoscaling in dynamical nuclear collisions

    Full text link
    Isoscaling is found to hold for fragment yields in the antisymmetrized molecular dynamics (AMD) simulations for collisions of calcium isotopes at 35 MeV/nucleon. This suggests the applicability of statistical considerations to the dynamical fragment emission. The observed linear relationship between the isoscaling parameters and the isospin asymmetry of fragments supports the above suggestion. The slope of this linear function yields information about the symmetry energy in low density region where multifragmentation occurs.Comment: 11 pages, 6 figure

    Evidence for realignment of the charge density wave state in ErTe3_3 and TmTe3_3 under uniaxial stress via elastocaloric and elastoresistivity measurements

    Full text link
    We report the evolution of a charge density wave (CDW) state in the quasi-2D rare-earth tritellurides (RRTe3_3 for RR=Er,Tm) as a function of in-plane uniaxial stress. Measurements of the elastocaloric effect, resistivity, and elastoresistivity allow us to demonstrate the importance of in-plane antisymmetric strain on the CDW and to establish a phase diagram. We show that modest tensile stress parallel to the in-plane aa-axis can reversibly switch the direction of the ordering wavevector between the two in-plane directions. This work establishes RRTe3_3 as a promising model system for the study of strain-CDW interactions in a quasi-2D square lattice.Comment: 18 pages, 12 figure

    THEORY OF DEFECTS IN CONDUCTING POLYMERS .2. APPLICATION TO POLYACETYLENE

    Get PDF
    We exploit the approach of a previous paper, based on self-consistent quantum-chemical molecular dynamics, to investigate the energetics and dynamics of excitations in conducting polymers. The predictions include the formation energies of solitons and polarons, the phenomenon of doping by alkali atoms, luminescence quenching in cis-polyacetylene, the soliton mobility in trans-polyacetylene and the non-existence of breathers in cis-polyacetylene

    Bond algebraic liquid phase in strongly correlated multiflavor cold atom systems

    Full text link
    When cold atoms are trapped in a square or cubic optical lattice, it should be possible to pump the atoms into excited p−p-level orbitals within each well. Following earlier work, we explore the metastable equilibrium that can be established before the atoms decay into the s−s-wave orbital ground state. We will discuss the situation with integer number of bosons on every site, and consider the strong correlation "insulating" regime. By employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". The gapless nature of this phase is stabilized due to the emergence of symmetries which lead to a quasi-one dimensional behavior. Within the algebraic liquid phase, both bond operators and particle flavor occupation number operators have correlations which decay algebraically in space and time. Upon varying parameters, the algebraic bond liquid can be unstable to either a Mott insulator phase which spontaneously breaks lattice symmetries, or a Z2\mathbb{Z}_2 phase. The possibility of detecting the algebraic liquid phase in cold atom experiments is addressed. Although the momentum distribution function is insufficient to distinguish the algebraic bond liquid from other phases, the density correlation function can in principle be used to detect this new phase of matter.Comment: 15 pages, 10 figure
    • …
    corecore