2,922 research outputs found
Molecular Technique to Understand Deep Microbial Diversity
Current sequencing-based and DNA microarray techniques to study microbial diversity are based on an initial PCR (polymerase chain reaction) amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of the minor template appears to be suppressed by the exponential amplification of the more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck has overlooked the presence of the less abundant minority population, and underestimated their role in the ecosystem maintenance. To generate PCR amplicons for subsequent diversity analysis, bacterial l6S rRNA genes are amplified by PCR using universal primers. Two distinct PCR regimes are employed in parallel: one using normal and the other using biotinlabeled universal primers. PCR products obtained with biotin-labeled primers are mixed with streptavidin-labeled magnetic beads and selectively captured in the presence of a magnetic field. Less-abundant DNA templates that fail to amplify in this first round of PCR amplification are subjected to a second round of PCR using normal universal primers. These PCR products are then subjected to downstream diversity analyses such as conventional cloning and sequencing. A second round of PCR amplified the minority population and completed the deep diversity picture of the environmental sample
Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity
Current planetary protection policies require that spacecraft targeted to sensitive solar system bodies be assembled and readied for launch in controlled cleanroom environments. A better understanding of the distribution and frequency at which high-risk contaminant microbes are encountered on spacecraft surfaces would significantly aid in assessing the threat of forward contamination. However, despite a growing understanding of the diverse microbial populations present in cleanrooms, less abundant microbial populations are probably not adequately taken into account due to technological limitations. This novel approach encompasses a wide spectrum of microbial species and will represent the true picture of spacecraft cleanroom-associated microbial diversity. All of the current microbial diversity assessment techniques are based on an initial PCR amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of a minor template appears to be suppressed by the amplification of a more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck overlooks the presence of the less abundant minority population and may underestimate their role in the ecosystem maintenance. DNA intercalating agents such as propidium monoazide (PMA) covalently bind with DNA molecules upon photolysis using visible light, and make it unavailable for DNA polymerase enzyme during polymerase chain reaction (PCR). Environmental DNA samples will be treated with suboptimum PMA concentration, enough to intercalate with 90 99% of the total DNA. The probability of PMA binding with DNA from abundant bacterial species will be much higher than binding with DNA from less abundant species. This will increase the relative DNA concentration of previously "shadowed" less abundant species available for PCR amplification. These PCR products obtained with and without PMA treatment will then be subjected to downstream diversity analyses such as sequencing and DNA microarray. It is expected that PMA-coupled PCR will amplify the "minority population" and help in understanding microbial diversity spectrum of an environmental sample at a much deeper level. This new protocol aims to overcome the major potential biases faced when analyzing microbial 16S rRNA gene diversity. This study will lead to a technological advancement and a commercial product that will aid microbial ecologists in understanding microbial diversity from various environmental niches. Implementation of this technique may lead to discoveries of novel microbes and their functions in sustenance of the ecosystem
Hybrid Analog-Digital Precoding Revisited Under Realistic RF Modeling
In this letter, we revisit hybrid analog-digital precoding systems with emphasis on the modeling of their radio-frequency (RF) losses, to realistically evaluate their benefits in 5G system implementations. We focus on fully-connected analog beamforming networks (FC-ABFNs) and on discrete Fourier transform implementations, and decompose these as a bank of commonly used RF components. We then model their losses based on their S-parameters. Our results reveal that the performance and energy efficiency of hybrid precoding systems are severely affected once these, commonly ignored, losses are considered in the overall design. In this context, we also show that hybrid precoder designs similar to Butler matrices are capable of providing better performances than FC-ABFN for systems with a large number of RF chains
Extreme Ionizing-Radiation-Resistant Bacterium
There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing microorganisms. Eradification techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation- based sterilization processes. Due to their resistance to a variety of perturbations, the non-spore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-spore-forming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/sq m), and desiccation (years). These resistive phenotypes of Deinococcus enhance the potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination
CFD modeling of microwave electrothermal thrusters
Microwave-heated plasmas in convergent nozzles are analyzed using a coupled Maxwell and Navier-Stokes solver to examine relevant issues associated with microwave thermal propulsion. Parametric studies are conducted to understand the effect of power, pressure, and plasma location with respect to the nozzle throat. For nozzles in the 0.5 to 3 N range with helium flow, results show that specific impulses up to 550-650 seconds are possible, with further increases being limited by severe wall-heating. Coupling efficiencies of over 90 percent are consistently obtained, with overall efficiencies ranging from 40 percent to 80 percent. Size scale-up studies-done by scaling the frequency from 2.45 GHz to 0.91 GHz-indicate that plasma migration toward the walls occurs more frequently for the lower frequency. Increasing the cavity aspect ratio and detuning the cavity are found to be effective ways of keeping the plasma on axis
From event analysis to global lessons: disaster forensics for building resilience
With unprecedented growth in disaster risk, there is an urgent need for enhanced learning about and understanding disasters, particularly in relation to the trends in the drivers of increasing risk. Building on the disaster forensics field, we introduce the Post Event Review Capability (PERC) methodology for systematically and holistically analyzing disaster events, and identifying actionable recommendations. PERC responds to a need for learning about the successes and failures in disaster risk management and resilience, and uncovers the underlying drivers of increasing risk. We draw generalizable insights identified from seven applications of the methodology to date, where we find that across the globe policy makers and practitioners in disaster risk management face strikingly similar challenges despite variations in context, indicating encouraging potential for mutual learning. These lessons highlight the importance of integrated risk reduction strategies. We invite others to utilize the freely available PERC approach and contribute to building a repository of learnings on disaster risk management and resilience.
This discussion paper is under review for the journal Natural Hazards and Earth System Sciences (NHESS)
Identification of Bacteria and Determination of Biological Indicators
The ultimate goal of planetary protection research is to develop superior strategies for inactivating resistance bearing micro-organisms like Rummeli - bacillus stabekisii. By first identifying the particular physiologic pathway and/or structural component of the cell/spore that affords it such elevated tolerance, eradication regimes can then be designed to target these resistance-conferring moieties without jeopardizing the structural integrity of spacecraft hardware. Furthermore, hospitals and government agencies frequently use biological indicators to ensure the efficacy of a wide range of sterilization processes. The spores of Rummelibacillus stabekisii, which are far more resistant to many of such perturbations, could likely serve as a more significant biological indicator for potential survival than those being used currently
Derivatization Ion Chromatography for the Determination of Monoethanolamine in Presence of Hydrazine in PHWR Steam-Water Circuits
A simple, rapid and accurate method for the determination of monoethanolamine (MEA) in PHWR steam-water circuits has been developed. MEA is added in the feed water to provide protection against corrosion while hydrazine is added to scavenge dissolved oxygen. The quantitative determination of MEA in presence of hydrazine was accomplished using derivatization ion chromatography with conductometric detection in nonsuppressed mode. A Metrosep cation 1-2 analytical column and a Metrosep cartridge were used for cation separation. A mixture of 4 mM tartaric acid, 20% acetone and 0.05 mM HNO3 was used as eluent. Acetone in the mobile phase leads to the formation of different derivatives with MEA and hydrazine. The interferences due Na+ and NH4 + were eliminated by adopting a simple pretreatment procedure employing OnGuard-H cartridge. The limit of detection limit of MEA was 0.1 μg mL−1 and the relative standard deviation was 2% for the overall method. The recovery of MEA added was in the range 95%–102%. The method was applied to the determination of MEA in steam generator water samples
Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice
BACKGROUND AND OBJECTIVE: Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development.
METHODOLOGY/RESULTS: To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr -/- mice that were either calpain-1 +/+ or -/- were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and -/- mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an actin binding cytoskeletal protein in aorta.
CONCLUSION: Calpain-2 compensates for loss of calpain-1, and both calpain isoforms are involved in AngII-induced aortic aneurysm formation in mice
- …