470 research outputs found

    Stroboscopic back-action evasion in a dense alkali-metal vapor

    Full text link
    We explore experimentally quantum non-demolition (QND) measurements of atomic spin in a hot potassium vapor in the presence of spin-exchange relaxation. We demonstrate a new technique for back-action evasion by stroboscopic modulation of the probe light. With this technique we study spin noise as a function of polarization for atoms with spin greater than 1/2 and obtain good agreement with a simple theoretical model. We point that in a system with fast spin-exchange, where the spin relaxation rate is changing with time, it is possible to improve the long-term sensitivity of atomic magnetometry by using QND measurements

    Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Get PDF
    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle

    A Low-Noise High-Density Alkali Metal Scalar Magnetometer

    Get PDF
    We present an experimental and theoretical study of a scalar atomic magnetometer using an oscillating field-driven Zeeman resonance in a high-density optically-pumped potassium vapor. We describe an experimental implementation of an atomic gradiometer with a noise level below 10 fT/Hz^{1/2}, fractional field sensitivity below 10^{-9}/Hz^{1/2}, and an active measurement volume of about 1.5 cm^3. We show that the fundamental field sensitivity of a scalar magnetometer is determined by the rate of alkali-metal spin-exchange collisions even though the resonance linewidth can be made much smaller than the spin-exchange rate by pumping most atoms into a stretched spin state.Comment: 10 pages, 7 figures. Version 2 is longer, with more complete description of theoretical analysis and comparison between analytical and experimental result

    Data warehouses-TOLAP-decision making

    Get PDF
    Data warehouses (DWH) have been established as the core of decision support systems. On top of a DWH, different applications can be realised with regard to conventional reporting. On line Analytical Processing (OLAP) has reached the maturity as an interactive and explorative way of analysing DWH data. However DWH are mostly organised as snapshot databases. For this reason important tasks like "how many times have products of a specific brand been sold in the "past?" cannot be answered successfully - in order to control the success of reshuffling the product range it is necessary to compare the sales of "old" and "new" products. The same applies in cases where the seasonality aspect for a particular range of products has to be answered. On the other hand, temporal databases allow a valid time to be assigned to data. In this manner, a past state can be reconstructed during retrieval. In this paper, we address the integration of DWH and OLAP with temporal database semantics

    A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare

    Get PDF
    Existing approaches to conceptual modelling (CM) in discrete-event simulation (DES) do not formally support the participation of a group of stakeholders. Simulation in healthcare can benefit from stakeholder participation as it makes possible to share multiple views and tacit knowledge from different parts of the system. We put forward a framework tailored to healthcare that supports the interaction of simulation modellers with a group of stakeholders to arrive at a common conceptual model. The framework incorporates two facilitated workshops. It consists of a package including: three key stages and sub-stages; activities and guidance; tools and prescribed outputs. The CM framework is tested in a real case study of an obesity system. The benefits of using this framework in healthcare studies and more widely in simulation are discussed. The paper also considers how the framework meets the conceptual modeling requirements

    The Coordinating Research on Emerging Arboviral Threats Encompassing the Neotropics (CREATE-NEO)

    Get PDF
    Arthropod-borne viruses, such as dengue, Zika, and Mayaro, are emerging at an accelerating rate in the neotropics. The C oordinating R esearch on E merging A rboviral T hreats E ncompassing the Neo tropics (CREATE-NEO) project, a part of the NIH-funded Centers for Research in Emerging Infectious Diseases (CREID) network provides a nimble and flexible network of surveillance sites in Central and South America coupled with cutting-edge modeling approaches to anticipate and counter these threats to public health. Collected data and generated models will be utilized to inform and alert local, regional, and global public health agencies of enzootic arboviruses with a high risk of spillover, emergence, and transmission among humans, and/or international spread. CREATE-NEO builds capacity in situ to anticipate, detect, and respond to emerging arboviruses at the point of origin, thereby maximizing the potential to avert full-blown emergence and widespread epidemics

    A polarized atomic hydrogen beam

    Get PDF
    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2

    A Demand and Capacity Model For Home-Based Intermediate Care: Optimizing The ‘Step Down’ Pathway

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordIntermediate care supports timely discharge from hospital for patients with complex healthcare needs. The purpose of 'step-down' care is to enable patients to leave hospital as soon as medically fit, avoiding costly discharge delays and consequent risks to patient health and wellbeing. Determining optimal intermediate care capacity requires balancing costs to both acute hospital and community care providers. Too much community capacity results in underutilized resources and poor economic efficiency, while too little risks excessive hospital discharge delays. Application of discrete-time simulation shows that total costs across the acute-community interface can be minimized by identifying optimal community capacity in terms of the maximum number of patients for which home visits can be provided by the service. To our knowledge, this is the first simulation study to model the patient pathway from hospital discharge through to community visits. Simulation modeling has supported short-term resource planning in a major English healthcare system.Health Data Research U

    Decoherence-free radiofrequency dressed subspaces

    Get PDF
    We study the spectral signatures and coherence properties of radiofrequency dressed hyperfine Zeeman sub-levels of 87Rb. Experimentally, we engineer combinations of static and RF magnetic fields to modify the response of the atomic spin states to environmental magnetic field noise. We demonstrate analytically and experimentally the existence of 'magic' dressing conditions where decoherence due to electromagnetic field noise is strongly suppressed. Building upon this result, we propose a bi-chromatic dressing configuration that reduces the global sensitivity of the atomic ground states to low-frequency noise, and enables the simultaneous protection of multiple transitions between the two ground hyperfine manifolds of atomic alkali species. Our methods produce protected transitions between any pair of hyperfine sub-levels at arbitrary (low) DC-magnetic fields.Comment: 14 pages, 12 figure
    corecore