714 research outputs found
ras Oncogene Activation Does Not Induce Sensitivity to Natural Killer Cell—Mediated Lysis in Human Melanoma
An important phenomenon in tumor immunology that has come under recent attention is the impact of oncogene activation in tumor cells on the sensitivity to lysis by immune effector cells. Several studies suggested that transfer of an activated ras oncogene into cultured rodent fibroblasts induces susceptibility to natural killer cell (NK)-mediated lysis. Experiments using human tumor cells, however, have produced conflicting data on the effect of ras activation in this respect. In studying the activation of the oncogene c-myc, which is often overexpressed in human melanoma, we have found that in cell lines expressing high levels of Myc protein, the sensitivity to lysis by NK cells was dramatically increased due to reduced expression of Human Leukocyte Antigen B locus products. Since the N-ras oncogene was found to be activated in 15% of human melanomas, we examined the possibility that in melanoma, in analogy to the murine systems, the mutated ras oncogene may influence NK susceptibility of human melanoma cells. Two N-ras genes harboring frequently found mutations were cloned into an expression vector. Transfection of the IGR39D melanoma cell line with wildtype and mutant N-ras constructs yielded several ras-expressing clones that were tested for NK sensitivity. Neither high expression of the wildtype N-ras protein, nor expression of two mutant proteins (N61-arg, N61-lys) was shown to result in enhanced NK-mediated lysis. We conclude that activation of ras oncogenes does not lead to the induction of an NK-sensitive phenotype in human melanoma cells. J Invest Dermatol 103:117S–121S, 199
Specific plasmid patterns and high rates of bacterial co-occurrence within the coral holobiont
Despite the importance of coral microbiomes for holobiont persistence, the interactions among these arenot well understood. In particular, knowledge of the co-occurrence and taxonomic importance of specific members of the microbial core, as well as patterns of specific mobile genetic elements (MGEs), is lacking. We used seawater and mucus samples collected from Mussismilia hispida colonies on two reefs located in Bahia, Brazil, to disentangle their associated bacterial communities, intertaxa correlations, and plasmid patterns. Proxies for two broad-host-range (BHR) plasmid groups, IncP-1 and PromA, were screened. Both groups were significantly (up to 252 and 100%, respectively) more abundant in coral mucus than in seawater. Notably, the PromA plasmid group was detected only in coral mucus samples. The core bacteriome of M.hispidamucus was composed primarily of members of the Proteobacteria, followed by those of Firmicutes. Significant host specificity and co-occurrences among different groups of the dominant phyla (e.g., Bacillaceae and Pseudoalteromonadaceae and the genera Pseudomonas, Bacillus, and Vibrio) were detected. These relationships were observed for both the most abundant phyla and the bacteriome core, in which most of the operational taxonomic units showed intertaxa correlations. The observed evidence of host-specific bacteriome and co-occurrence (and potential symbioses or niche space co-dominance) among the most dominant members indicates a taxonomic selection of members of the stable bacterial community. In parallel, host-specific plasmid patterns could also be, independently, related to the assembly of members of the coral microbiome
Interactions between bacterial inoculants and native soil bacterial community:The case of spore-forming <i>Bacillus</i> spp
Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities’ niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities’ niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity
CRISPR-Cas system:A new paradigm for bacterial stress response through genome rearrangement
Bacteria can receive genetic material from other bacteria or invading bacteriophages primarily through horizontal gene transfer. These genetic exchanges can result in genome rearrangement and the acquisition of novel traits that assist cells with stresses and adverse environmental conditions. Bacteria have a relatively small genome with >90% of sequences consisting of protein coding genes, stable RNA biomolecules, and gene regulatory sequences. The remaining genome fraction is primarily large repeat elements, such as retrotransposons, interspersed repeat elements, insertion sequences, and the more recently discovered clustered regularly interspaced short palindromic repeats (CRISPRs), with CRISPR-associated gene sequences (cas) that code for various Cas proteins. The CRISPR genetic locus is a series of direct repeats that are interspersed by unique spacer sequences. These unique spacer sequences represent signatures of bacteriophage genomes as the "working memory" for a bacterium to identify and destroy an invading phage genome that has previously infected the host. The protective function of the CRISPR-Cas systems are found in ∼40% of sequenced bacterial genomes, and it is often defined as bacterial acquired immunity. This chapter will elaborate the origin, structure, and function of CRISPR-Cas genetic systems acquired by bacteria, and their role in adaptive fitness while being subjected to environmental stress conditions
- …