180 research outputs found

    Impact of Beauty and Charm H1-ZEUS Combined Measurements on PDFs and Determination of the Strong Coupling

    Full text link
    In this QCD analysis, we investigate the impact of recent measurements of heavy-flavor charm and beauty cross sections data sets on the simultaneous determination of Parton Distribution Functions (PDFs) and the strong coupling, αs(MZ2)\alpha_s(M^2_Z). We perform three different fits based on Variable-Flavour Number Scheme (VFNS) at the Leading Order (LO) and Next-to-Leading Order (NLO) and choose the full HERA run I and II combined data as a new measurement of inclusive Deep Inelastic Scattering (DIS) cross sections for our base data set. We show that including charm and beauty cross sections data reduces the uncertainty of gluon distribution and improves the fit quality up to 4.1\% from leading order to next-to-leading order and up to 1.7\% for only NLO without and with beauty and charm data contributions.Comment: 20 pages, 4 figures. arXiv admin note: text overlap with arXiv:1709.0840

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm−2Wcm^{-2} and 5×1015 5\times10^{15} Wcm−2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    High-order harmonic generation by static coherent states method in single-electron atomic and molecular systems

    Get PDF
    We solve the time-dependent Schrodinger equation using the coherent states as basis sets for computing high harmonic generation (HHG) in a full-dimensional single-electron "realistic" system. We apply the static coherent states (SCS) method to investigate HHG in the hydrogen molecular ion induced by a linearly polarized laser field. We show that SCS gives reasonable agreement compared to the three dimensional unitary split-operator approach. Next, we study isolated attosecond pulse generation in H2+. To do so, we employ the well-known polarization gating technique, which combines two delayed counter-rotating circular laser pulses, and opens up a gate at the central portion of the superposed pulse. Our results suggest that the SCS method can be used for full-dimensional quantum simulation of higher dimensional systems such as the hydrogen molecule in the presence of an external laser field
    • …
    corecore