2,896 research outputs found
Laser Diode Induced Lighting Modules
Laser diodes have the potential of becoming the light engines of future lighting technology since they have negligible efficiency droop factor, unlike light emitting diodes. This study demonstrates the possibility of laser diodes coupled to phosphor targets being used as a solid state lighting system with high power applications. It was revealed that white light emitting modules with efficiency of up to 217 lumens per watt based on laser diodes can currently be made and upon further development of laser diode technology and relevant phosphor materials there is room for further improvements. The report also demonstrates the ability of this technology to produce a tailored emission spectrum for a given specific requirement. Two test lamp prototypes were made using laser diodes and phosphor targets and their emission characteristics were investigatedBrunel University London & EPSRC grant No. EP/K504208/
Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope
We study integrality gap (IG) lower bounds on strong LP and SDP relaxations
derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and
Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the
t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover
problem in which only t edges need to be covered. t-PVC admits a
2-approximation using various algorithmic techniques, all relying on a natural
LP relaxation. Starting from this LP relaxation, our main results assert that
for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P
systems that have been used for positive algorithmic results (but the Lasserre
hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices
of the input graph. Our lower bounds are nearly tight.
Our results show that restricted yet powerful models of computation derived
by many L&P systems fail to witness c-approximate solutions to t-PVC for any
constant c, and for t = O(n). This is one of the very few known examples of an
intractable combinatorial optimization problem for which LP-based algorithms
induce a constant approximation ratio, still lift-and-project LP and SDP
tightenings of the same LP have unbounded IGs.
We also show that the SDP that has given the best algorithm known for t-PVC
has integrality gap n/t on instances that can be solved by the level-1 LP
relaxation derived by the LS system. This constitutes another rare phenomenon
where (even in specific instances) a static LP outperforms an SDP that has been
used for the best approximation guarantee for the problem at hand. Finally, one
of our main contributions is that we make explicit of a new and simple
methodology of constructing solutions to LP relaxations that almost trivially
satisfy constraints derived by all SDP L&P systems known to be useful for
algorithmic positive results (except the La system).Comment: 26 page
The limits of filopodium stability
Filopodia are long, finger-like membrane tubes supported by cytoskeletal
filaments. Their shape is determined by the stiffness of the actin filament
bundles found inside them and by the interplay between the surface tension and
bending rigidity of the membrane. Although one might expect the Euler buckling
instability to limit the length of filopodia, we show through simple energetic
considerations that this is in general not the case. By further analyzing the
statics of filaments inside membrane tubes, and through computer simulations
that capture membrane and filament fluctuations, we show under which conditions
filopodia of arbitrary lengths are stable. We discuss several in vitro
experiments where this kind of stability has already been observed.
Furthermore, we predict that the filaments in long, stable filopodia adopt a
helical shape
Recommended from our members
Spatiotemporal profile of dendritic outgrowth from newly born granule cells in the adult rat dentate gyrus.
Neurogenesis in the adult dentate gyrus occurs in the subgranular zone where newborn neurons (NNs) migrate a short distance into the granule cell layer and extend their rudimentary apical dendritic processes upon a radial glial scaffold. Using doublecortin (DCX) immunocytochemistry, these growing dendrites can be visualized because dendritic growth cones, including filipodia and lamellipodia, are labeled in both light and electron microscopic preparations. To study the rate of dendritic outgrowth of newborn dentate granule cells, single injections of 5-bromo-2-deoxyuridine (BrdU) with different survival times were combined with double immunolabeling for BrdU and DCX. At the earliest time points (4 and 12 h after BrdU injections), a rudimentary process can be observed to emanate from BrdU/DCX double-labeled cells. By 48 h the dendrites first appeared in the molecular layer. By 96 h after BrdU injection, these apical dendrites extended into the middle of the molecular layer where they ramified. The calculated rate of dendritic growth for NNs was about 15 microm per day for the first 3 days, and then a doubling in length occurred at 4 and 5 days that coincided with a retraction of the basal dendrite. In addition, electron microscopy of DCX-labeled apical dendrites showed that they were much thinner (1/4 to 1/3 the size) in diameter than unlabeled, mature apical dendrites and that they had developing synapses on them in the molecular layer
The genome sequence and effector complement of the flax rust pathogen Melampsora lini
Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work
was funded by a grant from the CSIRO Transformational Biology
Capability Platform to Adnane Nemri. Claire Anderson was supported
by an ARC Discovery Grant (DP120104044) awarded to
David A. Jones and Peter N. Dodds
Functional Analysis of Spontaneous Cell Movement under Different Physiological Conditions
Cells can show not only spontaneous movement but also tactic responses to
environmental signals. Since the former can be regarded as the basis to realize
the latter, playing essential roles in various cellular functions, it is
important to investigate spontaneous movement quantitatively at different
physiological conditions in relation to cellular physiological functions. For
that purpose, we observed a series of spontaneous movements by Dictyostelium
cells at different developmental periods by using a single cell tracking
system. Using statistical analysis of these traced data, we found that cells
showed complex dynamics with anomalous diffusion and that their velocity
distribution had power-law tails in all conditions. Furthermore, as development
proceeded, average velocity and persistency of the movement increased and as
too did the exponential behavior in the velocity distribution. Based on these
results, we succeeded in applying a generalized Langevin model to the
experimental data. With this model, we discuss the relation of spontaneous cell
movement to cellular physiological function and its relevance to behavioral
strategies for cell survival.Comment: Accepted to PLoS ON
Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator
The spin chemical potential characterizes the tendency of spins to diffuse.
Probing the spin chemical potential could provide insight into materials such
as magnetic insulators and spin liquids and aid optimization of spintronic
devices. Here, we introduce single-spin magnetometry as a generic platform for
non-perturbative, nanoscale characterization of spin chemical potentials. We
use this platform to investigate magnons in a magnetic insulator, surprisingly
finding that the magnon chemical potential can be efficiently controlled by
driving the system's ferromagnetic resonance. We introduce a symmetry-based
two-fluid theory describing the underlying magnon processes, realize the first
experimental determination of the local thermomagnonic torque, and illustrate
the detection sensitivity using electrically controlled spin injection. Our
results open the way for nanoscale control and imaging of spin transport in
mesoscopic spin systems.Comment: 18 pages, 4 figure
Grand canonical ensemble in generalized thermostatistics
We study the grand-canonical ensemble with a fluctuating number of degrees of
freedom in the context of generalized thermostatistics. Several choices of
grand-canonical entropy functional are considered. The ideal gas is taken as an
example.Comment: 14 pages, no figure
- …
