2,896 research outputs found

    Laser Diode Induced Lighting Modules

    Get PDF
    Laser diodes have the potential of becoming the light engines of future lighting technology since they have negligible efficiency droop factor, unlike light emitting diodes. This study demonstrates the possibility of laser diodes coupled to phosphor targets being used as a solid state lighting system with high power applications. It was revealed that white light emitting modules with efficiency of up to 217 lumens per watt based on laser diodes can currently be made and upon further development of laser diode technology and relevant phosphor materials there is room for further improvements. The report also demonstrates the ability of this technology to produce a tailored emission spectrum for a given specific requirement. Two test lamp prototypes were made using laser diodes and phosphor targets and their emission characteristics were investigatedBrunel University London & EPSRC grant No. EP/K504208/

    Lift & Project Systems Performing on the Partial-Vertex-Cover Polytope

    Full text link
    We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the Sherali-Adams (SA), Lovasz-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project (L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this LP relaxation, our main results assert that for every epsilon > 0, level-Theta(n) LPs or SDPs derived by all known L&P systems that have been used for positive algorithmic results (but the Lasserre hierarchy) have IGs at least (1-epsilon)n/t, where n is the number of vertices of the input graph. Our lower bounds are nearly tight. Our results show that restricted yet powerful models of computation derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial optimization problem for which LP-based algorithms induce a constant approximation ratio, still lift-and-project LP and SDP tightenings of the same LP have unbounded IGs. We also show that the SDP that has given the best algorithm known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP relaxation derived by the LS system. This constitutes another rare phenomenon where (even in specific instances) a static LP outperforms an SDP that has been used for the best approximation guarantee for the problem at hand. Finally, one of our main contributions is that we make explicit of a new and simple methodology of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all SDP L&P systems known to be useful for algorithmic positive results (except the La system).Comment: 26 page

    The limits of filopodium stability

    Full text link
    Filopodia are long, finger-like membrane tubes supported by cytoskeletal filaments. Their shape is determined by the stiffness of the actin filament bundles found inside them and by the interplay between the surface tension and bending rigidity of the membrane. Although one might expect the Euler buckling instability to limit the length of filopodia, we show through simple energetic considerations that this is in general not the case. By further analyzing the statics of filaments inside membrane tubes, and through computer simulations that capture membrane and filament fluctuations, we show under which conditions filopodia of arbitrary lengths are stable. We discuss several in vitro experiments where this kind of stability has already been observed. Furthermore, we predict that the filaments in long, stable filopodia adopt a helical shape

    The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Get PDF
    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work was funded by a grant from the CSIRO Transformational Biology Capability Platform to Adnane Nemri. Claire Anderson was supported by an ARC Discovery Grant (DP120104044) awarded to David A. Jones and Peter N. Dodds

    Functional Analysis of Spontaneous Cell Movement under Different Physiological Conditions

    Get PDF
    Cells can show not only spontaneous movement but also tactic responses to environmental signals. Since the former can be regarded as the basis to realize the latter, playing essential roles in various cellular functions, it is important to investigate spontaneous movement quantitatively at different physiological conditions in relation to cellular physiological functions. For that purpose, we observed a series of spontaneous movements by Dictyostelium cells at different developmental periods by using a single cell tracking system. Using statistical analysis of these traced data, we found that cells showed complex dynamics with anomalous diffusion and that their velocity distribution had power-law tails in all conditions. Furthermore, as development proceeded, average velocity and persistency of the movement increased and as too did the exponential behavior in the velocity distribution. Based on these results, we succeeded in applying a generalized Langevin model to the experimental data. With this model, we discuss the relation of spontaneous cell movement to cellular physiological function and its relevance to behavioral strategies for cell survival.Comment: Accepted to PLoS ON

    Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator

    Full text link
    The spin chemical potential characterizes the tendency of spins to diffuse. Probing the spin chemical potential could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here, we introduce single-spin magnetometry as a generic platform for non-perturbative, nanoscale characterization of spin chemical potentials. We use this platform to investigate magnons in a magnetic insulator, surprisingly finding that the magnon chemical potential can be efficiently controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, realize the first experimental determination of the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results open the way for nanoscale control and imaging of spin transport in mesoscopic spin systems.Comment: 18 pages, 4 figure

    Grand canonical ensemble in generalized thermostatistics

    Full text link
    We study the grand-canonical ensemble with a fluctuating number of degrees of freedom in the context of generalized thermostatistics. Several choices of grand-canonical entropy functional are considered. The ideal gas is taken as an example.Comment: 14 pages, no figure
    corecore