10,528 research outputs found

    Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate

    Full text link
    We provide quantitative predictions for the rapidity, centrality and energy dependencies of inclusive charged-hadron productions for the forthcoming LHC measurements in nucleus-nucleus collisions based on the idea of gluon saturation in the color-glass condensate framework. Our formulation gives very good descriptions of the first data from the LHC for the inclusive charged-hadron production in proton-proton collisions, the deep inelastic scattering at HERA at small Bjorken-x, and the hadron multiplicities in nucleus-nucleus collisions at RHIC.Comment: 7 pages, 8 figures; v3: minor changes, one reference added, results unchanged, the version to appear in Phys. Rev.

    Soft interaction model and the LHC data

    Full text link
    Most models for soft interactions which were proposed prior to the measurements at the LHC, are only marginally compatible with LHC data, our GLM model has the same deficiency. In this paper we investigate possible causes of the problem, by considering separate fits to the high energy (W>500GeVW > 500\, GeV), and low energy (W<500GeVW < 500\, GeV) data. Our new results are moderately higher than our previous predictions. Our results for total and elastic cross sections are systematically lower that the recent Totem and Alice published values, while our results for the inelastic and forward slope agree with the data. If with additional experimental data, the errors are reduced, while the central cross section values remain unchanged, we will need to reconsider the physics on which our model is built.Comment: 12 pp, 12 figures in .eps file

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Bounds for mixing time of quantum walks on finite graphs

    Full text link
    Several inequalities are proved for the mixing time of discrete-time quantum walks on finite graphs. The mixing time is defined differently than in Aharonov, Ambainis, Kempe and Vazirani (2001) and it is found that for particular examples of walks on a cycle, a hypercube and a complete graph, quantum walks provide no speed-up in mixing over the classical counterparts. In addition, non-unitary quantum walks (i.e., walks with decoherence) are considered and a criterion for their convergence to the unique stationary distribution is derived.Comment: This is the journal version (except formatting); it is a significant revision of the previous version, in particular, it contains a new result about the convergence of quantum walks with decoherence; 16 page

    Heat exchange mediated by a quantum system

    Full text link
    We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large, but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the STM tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach.Comment: 16 pages, 6 figure

    Testing the black disk limit in pppp collisions at very high energy

    Full text link
    We use geometric scaling invariant quantities to measure the approach, or not, of the imaginary and real parts of the elastic scattering amplitude, to the black disk limit, in pppp collisions at very high energy.Comment: 11 pages, 4 figure

    First-order Raman spectra of double perovskites AB1/2B'{1/2}B''{1/2}O3

    Full text link
    First principles computations of Raman intensities were performed for perovskite-family compound CaAl1/2_{1/2}Nb1/2_{1/2}O3_3 (CAN). This compound features 1:1 (NaCl-type) ordering of Al and Nb superimposed onto the bbc+b^-b^-c+ octahedral tilting. Raman tensor for CAN was computed using the package for first-principles computations ABINIT (URL \underline {http://www.abinit.org}). Computations performed for both untilted cubic (Fm3ˉmFm\bar{3}m) and tilted monoclinic (P21/nP2_1/n) CAN structures showed that the strongest Raman lines are associated with the ordering of Al and Nb. The computed spectrum agreed qualitatively with the experimental data measured on powder (CAN is available in polycrystalline form only). The effect of cation disorder on the Raman intensities was considered using phenomenological theory of light scattering in the vicinity of a phase transition. We suggest that, for certain modes, the corresponding Raman intensities depend primarily on the average long range order while, for other modes, the intensities are determined by fluctuations of the order parameter.Comment: 4 figures, submitte

    Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003

    Get PDF
    During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%

    Prompt photon hadroproduction at high energies in the k_T-factorization approach

    Full text link
    We consider the prompt photon production at high energy hadron colliders in the framework of k_T-factorization approach. The unintegrated quark and gluon distributions in a proton are determined using the Kimber-Martin-Ryskin prescription. The conservative error analisys is performed. We investigate both inclusive prompt photon and prompt photon and associated muon production rates. In Standard Model such events come mainly due to Compton scattering process where the final heavy (charm or bottom) quark produces a muon. The theoretical results are compared with recent experimental data taken by the D0 and CDF collaborations at Fermilab Tevatron. Our analysis also covers the azimuthal correlations between produced prompt photon and muon which can provide an important information about non-collinear parton evolution in a proton. Finally, we extrapolate the theoretical predictions to CERN LHC energies.Comment: 27 pages, 13 figure
    corecore