7,419 research outputs found
Covariant Uniform Acceleration
We show that standard Relativistic Dynamics Equation F=dp/d\tau is only
partially covariant. To achieve full Lorentz covariance, we replace the
four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By
taking this tensor to be constant, we obtain a covariant definition of
uniformly accelerated motion. We compute explicit solutions for uniformly
accelerated motion which are divided into four types: null, linear, rotational,
and general. For null acceleration, the worldline is cubic in the time. Linear
acceleration covariantly extends 1D hyperbolic motion, while rotational
acceleration covariantly extends pure rotational motion.
We use Generalized Fermi-Walker transport to construct a uniformly
accelerated family of inertial frames which are instantaneously comoving to a
uniformly accelerated observer. We explain the connection between our approach
and that of Mashhoon. We show that our solutions of uniformly accelerated
motion have constant acceleration in the comoving frame. Assuming the Weak
Hypothesis of Locality, we obtain local spacetime transformations from a
uniformly accelerated frame K' to an inertial frame K. The spacetime
transformations between two uniformly accelerated frames with the same
acceleration are Lorentz. We compute the metric at an arbitrary point of a
uniformly accelerated frame.
We obtain velocity and acceleration transformations from a uniformly
accelerated system K' to an inertial frame K. We derive the general formula for
the time dilation between accelerated clocks. We obtain a formula for the
angular velocity of a uniformly accelerated object. Every rest point of K' is
uniformly accelerated, and its acceleration is a function of the observer's
acceleration and its position. We obtain an interpretation of the
Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.Comment: 36 page
Influence of the Coulomb Interaction on the Chemical Equilibrium of Nuclear Systems at Break-Up
The importance of a Coulomb correction to the formalism proposed by Albergo
et al. for determining the temperatures of nuclear systems at break-up and the
ensities of free nucleon gases is discussed. While the proposed correction has
no effect on the temperatures extracted based on double isotope ratios, it
becomes non-negligible when such temperatures or densities of free nucleon
gases are extracted based on multiplicities of heavier fragments of different
atomic numbers
Isotopic Scaling in Nuclear Reactions
A three parameter scaling relationship between isotopic distributions for
elements with Z has been observed that allows a simple description of
the dependence of such distributions on the overall isospin of the system. This
scaling law (termed iso-scaling) applies for a variety of reaction mechanisms
that are dominated by phase space, including evaporation, multifragmentation
and deeply inelastic scattering. The origins of this scaling behavior for the
various reaction mechanisms are explained. For multifragmentation processes,
the systematics is influenced by the density dependence of the asymmetry term
of the equation of state.Comment: 10 Pages, 2 Figure
The averaged null energy condition for general quantum field theories in two dimensions
It is shown that the averaged null energy condition is fulfilled for a dense,
translationally invariant set of vector states in any local quantum field
theory in two-dimensional Minkowski spacetime whenever the theory has a mass
gap and possesses an energy-momentum tensor. The latter is assumed to be a
Wightman field which is local relative to the observables, generates locally
the translations, is divergence-free, and energetically bounded. Thus the
averaged null energy condition can be deduced from completely generic, standard
assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur
The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44
We present measurements of the column densities of interstellar DI, OI, NI,
and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a
distance of 554+/-66 pc. This target is among the seven most distant Galactic
sight lines for which these abundance ratios have been measured. The column
densities were estimated by profile fitting and curve of growth analyses. We
find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75
+1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant
Galactic sight lines for which the deuterium abundance has been measured LSE 44
is one of the few with D/H higher than the Local Bubble value, but D/O toward
all these targets is below the Local Bubble value and more uniform than the D/H
distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap
The photometric properties of a vast stellar substructure in the outskirts of M33
We have surveyed sq.degrees surrounding M33 with CFHT MegaCam in the
g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our
observations are deep enough to resolve the top 4mags of the red giant branch
population in this galaxy. We have previously shown that the disk of M33 is
surrounded by a large, irregular, low-surface brightness substructure. Here, we
quantify the stellar populations and structure of this feature using the PAndAS
data. We show that the stellar populations of this feature are consistent with
an old population with dex and an interquartile range in
metallicity of dex. We construct a surface brightness map of M33 that
traces this feature to mags\,arcsec. At these low surface
brightness levels, the structure extends to projected radii of kpc from
the center of M33 in both the north-west and south-east quadrants of the
galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns
with the orientation of the HI disk warp. We calculate a lower limit to the
integrated luminosity of the structure of mags, comparable to a
bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the
total luminosity of M33. Further, we show that there is tentative evidence for
a distortion in the distribution of young stars near the edge of the HI disk
that occurs at similar azimuth to the warp in HI. The data also hint at a
low-level, extended stellar component at larger radius that may be a M33 halo
component. We revisit studies of M33 and its stellar populations in light of
these new results, and we discuss possible formation scenarios for the vast
stellar structure. Our favored model is that of the tidal disruption of M33 in
its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma
Nuclear Matter EOS with a Three-body Force
The effect of a microscopic three-body force on the saturation properties of
nuclear matter is studied within the Brueckner-Hartree-Fock approach. The
calculations show a decisive improvement of the saturation density along with
an overall agreement with the empirical saturation point. With the three-body
force the symmetry energy turns more rapidly increasing with density, which
allows for the direct URCA process to occur in -stable neutron star
matter. The influence of the three-body force on the nuclear mean field does
not diminish the role of the ground state correlations.Comment: 10 pages, 2 figure
Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor
We study macroscopic quantum tunneling of the magnetic moment in a
single-domain particle placed above the surface of a superconductor. Such a
setup allows one to manipulate the height of the energy barrier, preserving the
degeneracy of the ground state. The tunneling amplitude and the effect of the
dissipation in the superconductor are computed.Comment: RevTeX, 4 pages, 1 figure. Submitted to Phys. Rev. Let
Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach
We deduce the effects of quantum interference on the conductance of chaotic
cavities by using a statistical ansatz for the S matrix. Assuming that the
circular ensembles describe the S matrix of a chaotic cavity, we find that the
conductance fluctuation and weak-localization magnitudes are universal: they
are independent of the size and shape of the cavity if the number of incoming
modes, N, is large. The limit of small N is more relevant experimentally; here
we calculate the full distribution of the conductance and find striking
differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended),
hub.pam.94.
The generalization of the Regge-Wheeler equation for self-gravitating matter fields
It is shown that the dynamical evolution of perturbations on a static
spacetime is governed by a standard pulsation equation for the extrinsic
curvature tensor. The centerpiece of the pulsation equation is a wave operator
whose spatial part is manifestly self-adjoint. In contrast to metric
formulations, the curvature-based approach to gravitational perturbation theory
generalizes in a natural way to self-gravitating matter fields. For a certain
relevant subspace of perturbations the pulsation operator is symmetric with
respect to a positive inner product and therefore allows spectral theory to be
applied. In particular, this is the case for odd-parity perturbations of
spherically symmetric background configurations. As an example, the pulsation
equations for self-gravitating, non-Abelian gauge fields are explicitly shown
to be symmetric in the gravitational, the Yang Mills, and the off-diagonal
sector.Comment: 4 pages, revtex, no figure
- …