7,419 research outputs found

    Covariant Uniform Acceleration

    Full text link
    We show that standard Relativistic Dynamics Equation F=dp/d\tau is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. We compute explicit solutions for uniformly accelerated motion which are divided into four types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.Comment: 36 page

    Influence of the Coulomb Interaction on the Chemical Equilibrium of Nuclear Systems at Break-Up

    Get PDF
    The importance of a Coulomb correction to the formalism proposed by Albergo et al. for determining the temperatures of nuclear systems at break-up and the ensities of free nucleon gases is discussed. While the proposed correction has no effect on the temperatures extracted based on double isotope ratios, it becomes non-negligible when such temperatures or densities of free nucleon gases are extracted based on multiplicities of heavier fragments of different atomic numbers

    Isotopic Scaling in Nuclear Reactions

    Full text link
    A three parameter scaling relationship between isotopic distributions for elements with Z8\leq 8 has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.Comment: 10 Pages, 2 Figure

    The averaged null energy condition for general quantum field theories in two dimensions

    Full text link
    It is shown that the averaged null energy condition is fulfilled for a dense, translationally invariant set of vector states in any local quantum field theory in two-dimensional Minkowski spacetime whenever the theory has a mass gap and possesses an energy-momentum tensor. The latter is assumed to be a Wightman field which is local relative to the observables, generates locally the translations, is divergence-free, and energetically bounded. Thus the averaged null energy condition can be deduced from completely generic, standard assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    The photometric properties of a vast stellar substructure in the outskirts of M33

    Full text link
    We have surveyed 40\sim40sq.degrees surrounding M33 with CFHT MegaCam in the g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our observations are deep enough to resolve the top 4mags of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low-surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with <[Fe/H]>1.6<[Fe/H]>\sim-1.6dex and an interquartile range in metallicity of 0.5\sim0.5dex. We construct a surface brightness map of M33 that traces this feature to μV33\mu_V\simeq33mags\,arcsec2^{-2}. At these low surface brightness levels, the structure extends to projected radii of 40\sim40kpc from the center of M33 in both the north-west and south-east quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the HI disk warp. We calculate a lower limit to the integrated luminosity of the structure of 12.7±0.5-12.7\pm0.5mags, comparable to a bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the HI disk that occurs at similar azimuth to the warp in HI. The data also hint at a low-level, extended stellar component at larger radius that may be a M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results, and we discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma

    Nuclear Matter EOS with a Three-body Force

    Get PDF
    The effect of a microscopic three-body force on the saturation properties of nuclear matter is studied within the Brueckner-Hartree-Fock approach. The calculations show a decisive improvement of the saturation density along with an overall agreement with the empirical saturation point. With the three-body force the symmetry energy turns more rapidly increasing with density, which allows for the direct URCA process to occur in β\beta-stable neutron star matter. The influence of the three-body force on the nuclear mean field does not diminish the role of the ground state correlations.Comment: 10 pages, 2 figure

    Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    Full text link
    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.Comment: RevTeX, 4 pages, 1 figure. Submitted to Phys. Rev. Let

    Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach

    Full text link
    We deduce the effects of quantum interference on the conductance of chaotic cavities by using a statistical ansatz for the S matrix. Assuming that the circular ensembles describe the S matrix of a chaotic cavity, we find that the conductance fluctuation and weak-localization magnitudes are universal: they are independent of the size and shape of the cavity if the number of incoming modes, N, is large. The limit of small N is more relevant experimentally; here we calculate the full distribution of the conductance and find striking differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended), hub.pam.94.

    The generalization of the Regge-Wheeler equation for self-gravitating matter fields

    Full text link
    It is shown that the dynamical evolution of perturbations on a static spacetime is governed by a standard pulsation equation for the extrinsic curvature tensor. The centerpiece of the pulsation equation is a wave operator whose spatial part is manifestly self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. For a certain relevant subspace of perturbations the pulsation operator is symmetric with respect to a positive inner product and therefore allows spectral theory to be applied. In particular, this is the case for odd-parity perturbations of spherically symmetric background configurations. As an example, the pulsation equations for self-gravitating, non-Abelian gauge fields are explicitly shown to be symmetric in the gravitational, the Yang Mills, and the off-diagonal sector.Comment: 4 pages, revtex, no figure
    corecore