16 research outputs found

    The landscape of BRAF transcript and protein variants in human cancer

    Get PDF
    Background: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. Results: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. Conclusions: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies

    Pre-Micro RNA Signatures Delineate Stages of Endothelial Cell Transformation in Kaposi Sarcoma

    Get PDF
    MicroRNAs (miRNA) have emerged as key regulators of cell lineage differentiation and cancer. We used precursor miRNA profiling by a novel real-time QPCR method (i) to define progressive stages of endothelial cell transformation cumulating in Kaposi sarcoma (KS) and (ii) to identify specific miRNAs that serve as biomarkers for tumor progression. We were able to compare primary patient biopsies to well-established culture and mouse tumor models. Loss of mir-221 and gain of mir-15 expression demarked the transition from merely immortalized to fully tumorigenic endothelial cells. Mir-140 and Kaposi sarcoma–associated herpesvirus viral miRNAs increased linearly with the degree of transformation. Mir-24 emerged as a biomarker specific for KS

    Long non-coding RNAs in cancer: implications for personalized therapy

    No full text
    Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice

    Methods for the identification of PTEN-targeting microRNAs

    No full text
    The identification of PTEN -targeting microRNAs usually starts from an in silico bioinformatic prediction and then requires a careful experimental validation that exploits both heterologous and endogenous systems. Here we describe the methods used to carry on these analyses and experiments, examining pitfalls and alternatives for each step. Moreover, we give an overview of the latest high-throughput microRNA target identification techniques which offer a more comprehensive view of the microRNAs that can bind a fundamental tumor suppressor such as PTEN
    corecore