929 research outputs found
Update on the Measurement of alpha_S with a 500 GeV Linear Collider
An update on the prospects for the precise measurement of the strong coupling
constant alpha_S at a high energy Linear Collider via the three-jet rate is
presented. In particular, the issue of the distribution of center-of-mass
energies of the identified q-qbar event sample, which can affect the
determination of \alpha_S at the scale Q^2=(500 GeV)^2$, is addressed.Comment: 4 pages, 3 figures, LaTex, requires epsfig and aipproc macro
The Fishes of Maryland
Fish, from both a commercial and a sporting standpoint.
Based on fishes collected in Maryland only. A general treatise on fishes, setting forth the species, describing them and telling of their distribution, habits and other pertinent facts such as adaptations and coloring. Includes marine, freshwater littoral fishes. (PDF contains 120 pages
Electrical spin injection from an organic-based ferrimagnet in a hybrid organic/inorganic heterostructure
We report the successful extraction of spin polarized current from the
organic-based room temperature ferrimagnetic semiconductor V[TCNE]x (x~2, TCNE:
tetracyanoethylene; TC ~ 400 K, EG ~ 0.5 eV, s ~ 10-2 S/cm) and its subsequent
injection into a GaAs/AlGaAs light-emitting diode (LED). The spin current
tracks the magnetization of V[TCNE]x~2, is weakly temperature dependent, and
exhibits heavy hole / light hole asymmetry. This result has implications for
room temperature spintronics and the use of inorganic materials to probe spin
physics in organic and molecular systems
Dissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz
Graduate Education in Airport Administration: Preparing Airport Managers for the 21st Century
Growing numbers of students pursuing management careers in aviation are seeking graduate degrees to prepare for the complex and evolving challenges in the aviation industry. This study questioned members of the American Association of Airport Executives (AAAE) about their profession and the appropriateness of current education opportunities in aviation administration. The purpose of this study was to identify the knowledge and skills that the next generation of airport administrators will need to effectively contend with the new industrial environment
Positively Correlated miRNA-miRNA Regulatory Networks in Mouse Frontal Cortex During Early Stages of Alcohol Dependence
Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. Results: miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. Conclusions: This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.NIAAA 5R01AA012404, 5P20AA017838, 5U01AA013520, P01AA020683, 5T32AA007471-24/25Waggoner Center for Alcohol and Addiction Researc
- …