5 research outputs found

    Replication Data for: NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate

    No full text
    The data underlying this published work have been made publicly available in this repository as part of the IMASC Data Management Plan. This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0012573

    SAFE Software and FED database to uncover protein-protein interactions using gene fusion analysis

    No full text
    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality. © the author(s), publisher and licensee Libertas Academica Ltd

    Protein functional links in <it>Trypanosoma brucei</it>, identified by gene fusion analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and <it>Drosophila</it>.</p> <p>Results</p> <p>In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in <it>Trypanosoma brucei</it>, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs.</p> <p>Conclusions</p> <p>This is the first study of protein functional links in <it>T. brucei </it>identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.</p
    corecore