1,544 research outputs found
Technical appendix to locally stationary wavelet fields with application to the modelling and analysis of image texture.
This report is an appendix to the paper Locally stationary wavelet fields with application to the modelling and analysis of image texture, providing proofs for all the major results
Topological versus rheological entanglement length in primitive path analysis protocols
Primitive path analysis algorithms are now routinely employed to analyze
entanglements in computer simulations of polymeric systems, but different
analysis protocols result in different estimates of the entanglement length,
N_e. Here we argue that standard PPA measures the rheological entanglement
length, typically employed by tube models and relevant to quantitative
comparisons with experiment, while codes like Z or CReTA also determine the
topological entanglement length. For loosely entangled systems, a simple
analogy between between phantom networks and the mesh of entangled primitive
paths suggests a factor of two between the two numbers. This result is in
excellent agreement with reported values for poly-ethylene, poly-butadiene and
bead-spring polymer melts.Comment: 3 pages, no figure
Optimized cross-slot flow geometry for microfluidic extension rheometry
A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model
Direct optical observations of surface thermal motions at sub-shot noise levels
We measure spectral properties of surface thermal fluctuations of liquids,
solids, complex fluids and biological matter using light scattering methods.
The random thermal fluctuations are delineated from random noise at sub-shot
noise levels. The principle behind this extraction, which is quite general and
is not limited to surface measurements, is explained. An optical lever is used
to measure the spectrum of fluctuations in the inclinations of surfaces down to
at W optical intensity, corresponding
to in the vertical displacement, in the
frequency range . The dynamical evolution of the
surface properties is also investigated. The measurement requires only a short
amount of time and is essentially passive, so that it can be applied to a wide
variety of surfaces.Comment: 5pp, 5 figure
Stretching Semiflexible Polymer Chains: Evidence for the Importance of Excluded Volume Effects from Monte Carlo Simulation
Semiflexible macromolecules in dilute solution under very good solvent
conditions are modeled by self-avoiding walks on the simple cubic lattice
( dimensions) and square lattice ( dimensions), varying chain
stiffness by an energy penalty for chain bending. In the absence
of excluded volume interactions, the persistence length of the
polymers would then simply be with , the bond length being the lattice spacing,
and is the thermal energy. Using Monte Carlo simulations applying the
pruned-enriched Rosenbluth method (PERM), both and the chain length
are varied over a wide range ), and
also a stretching force is applied to one chain end (fixing the other end
at the origin). In the absence of this force, in a single crossover from
rod-like behavior (for contour lengths less than ) to swollen coils
occurs, invalidating the Kratky-Porod model, while in a double crossover
occurs, from rods to Gaussian coils (as implied by the Kratky-Porod model) and
then to coils that are swollen due to the excluded volume interaction. If the
stretching force is applied, excluded volume interactions matter for the force
versus extension relation irrespective of chain stiffness in , while
theories based on the Kratky-Porod model are found to work in for stiff
chains in an intermediate regime of chain extensions. While for in
this model a persistence length can be estimated from the initial decay of
bond-orientational correlations, it is argued that this is not possible for
more complex wormlike chains (e.g. bottle-brush polymers). Consequences for the
proper interpretation of experiments are briefly discussed.Comment: 23 pages, 17 figures, 2 tables, to be published in J. Chem. Phys.
(2011
Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening
The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain
hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories
such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling
Goldstone fluctuations in the amorphous solid state
Goldstone modes in the amorphous solid state, resulting from the spontaneous
breaking of translational symmetry due to random localisation of particles, are
discussed. Starting from a microscopic model with quenched disorder, the broken
symmetry is identified to be that of relative translations of the replicas.
Goldstone excitations, corresponding to pure shear deformations, are
constructed from long wavelength distortions of the order parameter. The
elastic free energy is computed, and it is shown that Goldstone fluctuations
destroy localisation in two spatial dimensions, yielding a two-dimensional
amorphous solid state characterised by power-law correlations.Comment: 7 pages, 2 figure
The Gounkoto Au deposit, West Africa: Constraints on ore genesis and volatile sources from petrological, fluid inclusion and stable isotope data
The Loulo–Gounkoto complex in the Kédougou–Kéniéba Inlier hosts three multi-million ounce orogenic gold deposits, situated along the Senegal–Mali Shear Zone. This west Malian gold belt represents the largest West African orogenic gold district outside Ghana. The Gounkoto deposit is hosted to the south of the Gara and Yalea gold mines in the Kofi Series metasedimentary rocks. The ore body is structurally controlled and is characterised by sodic and phyllic alteration, As- and Fe-rich ore assemblages, with abundant magnetite, and overall enrichment in Fe–As–Cu–Au–Ag–W–Ni–Co–REE + minor Te–Pb–Se–Cd. Fluid inclusion analysis indicates that the deposit formed at P–T conditions of approximately 1.4 kbar and 340 °C and that two end member fluids were involved in mineralisation: (1) a moderate temperature (315–340 °C), low salinity (< 10 wt.% NaCl equiv.), low density (≤ 1 g·cm− 3), H2O–CO2–NaCl–H2S ± N2–CH4 fluid; (2) a high temperature (up to 445 °C), hypersaline (~ 40 wt.% NaCl equiv.), high density (~ 1.3 g·cm− 3), H2O–CO2–NaCl ± FeCl2 fluid. Partial mixing of these fluids within the Jog Zone at Gounkoto enhanced phase separation in the aqueo-carbonic fluid and acted as a precipitation mechanism for Au. These findings demonstrate the widespread, if heterogeneously distributed, nature of fluid mixing as an ore forming process in the Loulo–Gounkoto complex, operating over at least a 30 km strike length of the shear zone. Stable isotope analyses of ore components at Gounkoto indicate a dominant metamorphic source for H2O, H2S and CO2, and by extension Au. It thus can be reasoned that both the aqueo-carbonic and the hypersaline fluid at Gounkoto are of metamorphic origin and that the high levels of salinity in the brine are likely derived from evaporite dissolution
Dating of the oldest continental sediments from the Himalayan foreland basin
A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated
- …
