1,712 research outputs found

    Connection Matrices and the Definability of Graph Parameters

    Full text link
    In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers

    Micro-Contacts Testing Using a Micro-Force Sensor Compatible with Biological Systems

    Get PDF
    This paper presents the performance and reliability testing of microelectromechanical systems (MEMS) switches by using a micro-force sensor which was originally designed/used to conduct mechanical testing of biological cells. MEMS switches are key components for radio frequency (RF) applications due to their extremely low power consumption and small geometries over conventional technologies. However, unstable electrical contact resistance severely degrades the performance and reliability of such micro-switches. Therefore, our focus is to improve the performance and reliability of “cold” switched micro-contacts by using novel contact materials and engineered micro-contact surfaces. The contact metallurgies considered in this work are “similar” thin film combinations of Au, and composite Au/CNT. The non-engineered switch consists of a metallic hemispherical bump and a planar sheet as upper and lower contacts, respectively. On the other hand, the engineered switches have 2D pyramid structure in lower contacts while having a hemispherical bump at upper contact. Hemisphere on planar, Au-Au, contact pairs resulted in initial contact resistance (RC) values of ~0.1Ω (FC=200”N) that linearly increased to ~1.0Ω after ~10×106 cycles and then failed open (~10.0Ω) at ~20×106 switching cycles. The Au-Au/CNT composite, hemisphere on planar contact pair showed similar RC performance with extended reliability (~40×106 switching cycles) when the composite film was integrated into the lower planar contacted. Upper hemisphere on the 2D pyramid, Au-Au, contact pairs resulted in initial RC values of ~0.9Ω (FC=200”N) that linearly decreased to ~0.5Ω at \u3e10×106 cycles (not failed). This work suggests that the combination of engineered lower contacts and composite materials can significantly improve the performance and reliability of micro-switches

    Experimental Validation of External Load Effects for Micro-Contacts under Low Frequency, Low Amplitude Alternating Current (AC) Test Conditions

    Get PDF
    The use of micro-contacts has been demonstrated in various radio frequency (RF) applications. However, the premature failure of such devices under alternating current (AC) operations is still a hurdle to further development. In this work, modified gray scale lithography is performed to fabricate two types of gold–gold (Au–Au) micro-contacts: hemispherical-planar and hemispherical-2D pyramid. The performance of these devices was investigated under low frequency, low amplitude AC conditions with external circuit loads. A custom-made experimental setup which uses various load configurations, controls the frequency of the applied voltage and modifies the cycle rate of switch operation to obtain the contact resistance as a function of number of cycles (up to 107 cycles). Nearly 87% of the tested devices (13 out of 15 hemispherical-planar micro-contacts) were found to be in good operational condition and passed the 10 million cycle mark successfully. A steady gain and large swing in the value of contact resistance was also observed near the end of all, but one, tests. Such changes in contact resistance were found to be permanent as none of the devices recovered completely. On the other hand, the hemispherical-2D pyramid micro-contact performed better than the planar one as it also passed 107 cycle mark with low and remarkably stable contact resistance throughout the testing span. This study suggests that micro-contacts with ‘engineered’ surface structures with external loads applied are a viable solution to premature failure and high contact resistance in micro-contacts under low frequency AC operations

    Constitutive Association of Tie1 and Tie2 with Endothelial Integrins is Functionally Modulated by Angiopoietin-1 and Fibronectin

    Get PDF
    Functional cross-talk between Tie2 and Integrin signaling pathways is essential to coordinate endothelial cell adhesion and migration in response to the extracellular matrix, yet the mechanisms behind this phenomenon are unclear. Here, we examine the possibility that receptor cross-talk is driven through uncharacterized Tie-integrin interactions on the endothelial surface. Using a live cell FRET-based proximity assay, we monitor Tie-integrin receptor recognition and demonstrate that both Tie1 and Tie2 readily associate with integrins α5ß1 and αVß3 through their respective ectodomains. Although not required, Tie2-integrin association is significantly enhanced in the presence of the extracellular component and integrin ligand fibronectin. In vitro binding assays with purified components reveal that Tie-integrin recognition is direct, and further demonstrate that the receptor binding domain of the Tie2 ligand Ang-1, but not the receptor binding domain of Ang-2, can independently associate with α5ß1 or αVß3. Finally, we reveal that cooperative Tie/integrin interactions selectively stimulate ERK/MAPK signaling in the presence of both Ang-1 and fibronectin, suggesting a molecular mechanism to sensitize Tie2 to extracellular matrix. We provide a mechanistic model highlighting the role of receptor localization and association in regulating distinct signaling cascades and in turn, the angiogenic switch
    • 

    corecore