55 research outputs found

    SAM68 is required for regulation of Pumilio by the NORAD long noncoding RNA

    Get PDF
    The number of known long noncoding RNA (lncRNA) functions is rapidly growing, but how those functions are encoded in their sequence and structure remains poorly understood. NORAD (noncoding RNA activated by DNA damage) is a recently characterized, abundant, and highly conserved lncRNA that is required for proper mitotic divisions in human cells. NORAD acts in the cytoplasm and antagonizes repressors from the Pumilio family that bind at least 17 sites spread through 12 repetitive units in NORAD sequence. Here we study conserved sequences in NORAD repeats, identify additional interacting partners, and characterize the interaction between NORAD and the RNA-binding protein SAM68 (KHDRBS1), which is required for NORAD function in antagonizing Pumilio. These interactions provide a paradigm for how repeated elements in a lncRNA facilitate function.</jats:p

    Contrasting the effectiveness and efficiency of virtual reality and real environments in the treatment of acrophobia

    Get PDF
    Previous studies reported good results in using virtual reality for the treatment of acrophobia. Similarly this paper reports the use of a virtual environment for the treatment of acrophobia. In the study, 10 subjects were exposed to three sessions of simulated heights in a virtual reality (VR) system, and 5 others were exposed to a real environment. Both groups revealed significant progress in a range of anxiety, avoidance and behaviour measurements when confronted with virtual as well as real height circumstances. Despite VR participants experiencing considerably shorter treatment times than the real-world subjects, significant improvements were recorded on the Behavioural Avoidance Test, the Attitudes Toward Heights Questionnaire and the Acrophobia Questionnaire. These results are suggestive of a possible higher effectiveness and efficiency of VR in treating acrophobia

    A virtual reality collaborative planning simulator and its method for three machines in a fully mechanized coal mining face

    Get PDF
    The existing automatic control program and its parameters for three machines in a fully mechanized Coal Mining face are static and simplex and are therefore inadequate for satisfying the complex and dynamic environment of underground coal mines. To overcome this problem, a collaborative mathematical model is established that includes the effects of a dynamic environment. A virtual reality collaborative planning simulator with methods for the three machines is also proposed based on a multi-agent system. According to the dynamic characteristics of the environment, equipment, and technologies, a fully mechanized Unity3D simulator (FMUnitySim) is designed in terms of multiple factors and multiple dimensions. The factors affecting the coordinated operation of the three machines are analyzed and modeled. The communication modes, coordination, and redundant sensing process among multiple agents, which include the shearer agent and the scraper conveyor agent, are also investigated in detail. Using this system, the key parameters of the three machines can be planned and adjusted online to design and distinctly observe the corresponding collaborative simulations of coordinated operation with multiple perspectives and in real time. Tests of different maximum shearer haulage speeds for regular or reverse transporting coal are designed; their key parameters, including the average shearer haulage speed, average follower distance, and average scraper conveyor load, are planned and simulated using FMUnitySim. The optimal parameter combination is obtained by analyzing and comparing the simulation results. The proposed FMUnitySim offers an effective means and theoretical basis for the rapid planning and safe automatic production of a fully mechanized Coal Mining face

    Predicting the valence of a scene from observers’ eye movements

    Get PDF
    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images

    Alitet gaat naar de bergen /

    No full text

    The role of self-motion in acrophobia treatment

    Get PDF
    Acrophobia is a chronic, highly debilitating disorder preventing sufferers from engaging with high places. Its etiology is linked to the development of mobility during infancy. We evaluated the efficacy of various types of movement in the treatment of this disorder within a virtual reality (VR) environment. Four men and four women who were diagnosed with acrophobia were tested in a virtual environment reproducing the balcony of a hotel. Anxiety and behavioral avoidance measures were taken as participants climbed outdoor stairs, moved sideways on balconies, or stood still. This took place in both real and virtual environments as part of a treatment evaluation study. Participants experienced an elevated level of anxiety not only to increases in height but also when required to move laterally at a fixed height. These anxiety levels were significantly higher than those elicited by viewing the fear-invoking scene without movement. We have demonstrated a direct link between any type of movement at a height and the triggering of acrophobia in line with earlier developmental studies. We suggest that recalibration of the action-perception system, aided by VR, can be an important adjunct to standard psychotherapy. © 2008 Mary Ann Liebert, Inc
    corecore