71 research outputs found

    Synchronization hypothesis in the Winfree model

    Full text link
    We consider NN oscillators coupled by a mean field as in the Winfree model. The model is governed by two parameters: the coupling strength κ\kappa and the spectrum width γ\gamma of the frequencies of each oscillator. In the uncoupled regime, κ=0\kappa=0, each oscillator possesses its own natural frequency, and the difference between the phases of any two oscillators grows linearly in time. We say that NN oscillators are synchronized if the difference between any two phases is uniformly bounded in time. We identify a new hypothesis for the existence of synchronization. The domain in (γ,κ)(\gamma,\kappa) of synchronization contains coupling values that are both weak and strong. Moreover the domain is independent of the number of oscillators and the distribution of the frequencies. We give a numerical counter-example which shows that this hypothesis is necessary for the existence of synchronization

    Martingale structure of Skorohod integral processes

    Get PDF
    Let the process Y(t) be a Skorohod integral process with respect to Brownian motion. We use a recent result by Tudor (2004), to prove that Y(t) can be represented as the limit of linear combinations of processes that are products of forward and backward Brownian martingales. Such a result is a further step towards the connection between the theory of continuous-time (semi)martingales, and that of anticipating stochastic integration. We establish an explicit link between our results and the classic characterization, due to Duc and Nualart (1990), of the chaotic decomposition of Skorohod integral processes. We also explore the case of Skorohod integral processes that are time-reversed Brownian martingales, and provide an "anticipating" counterpart to the classic Optional Sampling Theorem for It\^{o} stochastic integrals.Comment: To appear in The Annals of Probabilit

    Eigenfunctions of the Laplacian and associated Ruelle operator

    Full text link
    Let Γ\Gamma be a co-compact Fuchsian group of isometries on the Poincar\'e disk \DD and Δ\Delta the corresponding hyperbolic Laplace operator. Any smooth eigenfunction ff of Δ\Delta, equivariant by Γ\Gamma with real eigenvalue λ=s(1s)\lambda=-s(1-s), where s=1/2+its={1/2}+ it, admits an integral representation by a distribution \dd_{f,s} (the Helgason distribution) which is equivariant by Γ\Gamma and supported at infinity \partial\DD=\SS^1. The geodesic flow on the compact surface \DD/\Gamma is conjugate to a suspension over a natural extension of a piecewise analytic map T:\SS^1\to\SS^1, the so-called Bowen-Series transformation. Let s\ll_s be the complex Ruelle transfer operator associated to the jacobian slnT-s\ln |T'|. M. Pollicott showed that \dd_{f,s} is an eigenfunction of the dual operator s\ll_s^* for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction ψf,s\psi_{f,s} of s\ll_s for the eigenvalue 1, given by an integral formula \psi_{f,s} (\xi)=\int \frac{J(\xi,\eta)}{|\xi-\eta|^{2s}} \dd_{f,s} (d\eta), \noindent where J(ξ,η)J(\xi,\eta) is a {0,1}\{0,1\}-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \DD/\Gamma

    Characterization of chaos in random maps

    Full text link
    We discuss the characterization of chaotic behaviours in random maps both in terms of the Lyapunov exponent and of the spectral properties of the Perron-Frobenius operator. In particular, we study a logistic map where the control parameter is extracted at random at each time step by considering finite dimensional approximation of the Perron-Frobenius operatorComment: Plane TeX file, 15 pages, and 5 figures available under request to [email protected]

    Perturbations of Noise: The origins of Isothermal Flows

    Full text link
    We make a detailed analysis of both phenomenological and analytic background for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634). A corresponding theory of the isothermal Brownian motion of particle ensembles (Smoluchowski diffusion process approximation), gives account of the environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we elevate the individually negligible phenomena to a non-negligible (accumulated) recoil effect on the ensemble average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural substitute for the local momentum conservation law. Together with the continuity equation (alternatively, Fokker-Planck), it forms a closed system of partial differential equations which uniquely determines an associated Markovian diffusion process. The third Newton law in the mean is utilised to generate diffusion-type processes which are either anomalous (enhanced), or generically non-dispersive.Comment: Latex fil

    Bernstein Processes Associated with a Markov Process

    Full text link
    Abstract. A general description of Bernstein processes, a class of diffusion processes, relevant to the probabilistic counterpart of quantum theory known as Euclidean Quantum Mechanics, is given. It is compatible with finite or infinite dimensional state spaces and singular interactions. Although the rela-tions with statistical physics concepts (Gibbs measure, entropy,...) is stressed here, recent developments requiring Feynman’s quantum mechanical tools (ac-tion functional, path integrals, Noether’s Theorem,...) are also mentioned and suggest new research directions, especially in the geometrical structure of our approach. This is a review of various recent developments regarding the construction and properties of Bernstein processes, a class of diffusions originally introduced for the purpose of Euclidean Quantum Mechanics (EQM), a probabilistic analogue o

    Sur les pierres taillées anti-classiques

    No full text
    Thieullen A. Sur les pierres taillées anti-classiques. In: Bulletins et Mémoires de la Société d'anthropologie de Paris, V° Série. Tome 6, 1905. pp. 199-203

    Deuxième étude sur les pierres-figures à retouches intentionnelles à l'époque du creusement des vallées quaternaires

    No full text
    Thieullen A. Deuxième étude sur les pierres-figures à retouches intentionnelles à l'époque du creusement des vallées quaternaires. In: Bulletins de la Société d'anthropologie de Paris, V° Série. Tome 2, 1901. pp. 166-188

    Poteries funéraires, ossements, crânes, etc., de l'époque mérovingienne

    No full text
    Thieullen A. Poteries funéraires, ossements, crânes, etc., de l'époque mérovingienne. In: Bulletins de la Société d'anthropologie de Paris, IV° Série. Tome 6, 1895. pp. 328-330
    corecore