398 research outputs found

    Nonadiabatic effects of rattling phonons and 4f excitations in Pr(Os{1-x}Ru{x})4Sb12

    Full text link
    In the skutterudite compounds the anharmonic 'rattling' oscillations of 4f-host ions in the surrounding Sb12 cages are found to have significant influence on the low temperature properties. Recently specific heat analysis of Pr(Os{1-x}Ru{x})4Sb12 has shown that the energy of crystalline electric field (CEF) singlet-triplet excitations increases strongly with Ru-concentration x and crosses the almost constant rattling mode frequency ω0\omega_0 at about x ~ 0.65. Due to magnetoelastic interactions this may entail prominent nonadiabatic effects in inelastic neutron scattering (INS) intensity and quadrupolar susceptibility. Furthermore the Ru- concentration dependence of the superconducting Tc, notably the minimum at intermediate x is explained as a crossover effect from pairforming aspherical Coulomb scattering to pairbreaking exchange scattering.Comment: 12 pages, 5 figures; to appear in Phys. Rev.

    CPA for charge ordering in the extended Hubbard model

    Full text link
    We study charge ordering in the extended Hubbard model with both on-site and nearest neighbor Coulomb repulsion (U and V, respectively) within the Coherent potential approximation (CPA). The phase boundary between the homogeneous and charge ordered phase for the square lattice is obtained for different values of U. It is shown that at quarter filling for all values of U the charge ordering exists only if the inter-site Coulomb repulsion V exceeds certain critical value which is of the order of the kinetic energy t. At finite temperature a reentrant transition is found in some region of V.Comment: 5 pages, 4 figure

    Magnetic excitations in charge- ordered NaV2O5

    Full text link
    An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in- line and zig-zag chain models with weak as well as strong inter- chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V- ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic- optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter- chain coupling, as suggested by recent LDA+U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering.Comment: Revtex, 22 pages, 7 postscript figure

    Spin Exciton Formation inside the Hidden Order Phase of CeB6

    Full text link
    The heavy fermion metal CeB6 exhibits hidden order of antiferroquadrupolar (AFQ) type below T_Q=3.2K and subsequent antiferromagnetic (AFM) order at T_N=2.3K. It was interpreted as ordering of the quadrupole and dipole moments of a Γ8\Gamma_8 quartet of localised Ce 4f14f^1 electrons. This established picture has been profoundly shaken by recent inelastic neutron scattering (G. Friemel et al., arXiv:1111.4151) that found the evolution of a feedback spin exciton resonance within the hidden order phase at the AFQ wave vector which is stabilized by the AFM order. We develop an alternative theory based on a fourfold degenerate Anderson lattice model, including both order parameters as particle-hole condensates of itinerant heavy quasiparticles. This explains in a natural way the appearance of the spin exciton resonance and the momentum dependence of its spectral weight, in particular around the AFQ vector and its rapid disappearance in the disordered phase. Analogies to the feedback effect in unconventional heavy fermion superconductors are pointed out.Comment: 5 pages, 3 figure

    Superconductivity in a magnetically ordered background

    Full text link
    Borocarbide compounds with the formula RNi2B2C show interesting superconducting and magnetic properties and the coexistence of the two phenomena. BCS theory is extended to systems with underlying commensurate magnetic order. In the case of helical phases the technique may be extended to any Q-vector and there exists a well defined limit for incommensurate values. The way magnetic order influences superconductivity depends crucially on the details of both the magnetic structure and the electron bands, but some qualitative criteria may be given. As an example we give a brief analysis of the compound HoNi2B2C.Comment: 3 pages, 1 figure, proceedings to the conference "Anomalous Complex Superconductors", Crete 199

    Reentrant Kondo effect in Landau quantized graphene

    Full text link
    We have studied the interplay of an Anderson impurity in Landau quantized graphene, with special emphasis on the influence of the chemical potential. Within the slave-boson mean-field theory, we found reentrant Kondo behaviour by varying the chemical potential or gate voltage. Between Landau levels, the density of states is suppressed, and by changing the graphene's Fermi energy, we cross from metallic to semiconducting regions. Hence, the corresponding Kondo behaviour is also influenced. The f-level spectral function reveals both the presence of Landau levels in the conduction band and the Kondo resonance.Comment: 8 pages, 6 figure

    Field induced quantum phase transition in the anisotropic Kondo necklace model

    Full text link
    The anisotropic Kondo necklace model in 2D and 3D is treated as a genuine model for magnetic to Kondo singlet quantum phase transitions in the heavy fermion (HF) compounds. The variation of the quantum critical point (QCP) with anisotropy parameters has been investigated previously in the zero field case [1]. Here we extend the treatment to finite fields using a generalised bond operator representation including all triplet states. The variation of critical tc with external field H and the associated phase diagram is derived. The influence of anisotropies and the different g-factors for localised and itinerant spins on tc(H) is also investigated. It is found that three different types of behaviour may appear: (i) Destruction of antiferromangetism and appearance of a singlet state above a critical field. (ii) The inverese behaviour, namely field induced antiferromagnetism out of the Kondo singlet phase. (iii) Reentrance behaviour of the Kondo singlet phase as function of field strength.Comment: 12 pages, 5 figure

    Dynamic spin susceptibility of paramagnetic spinel LiV2O4

    Full text link
    In an attempt to explain inelastic neutron scattering data for LiV2O4 the dynamical spin susceptibility \chi(Q,w) at zero temperature is calculated. Starting point is a weak coupling approach based on the LDA bandstructure for that material. It is supplemented by a RPA treatment of local on-site interactions and contains an adjustable parameter. Due to the geometrically frustrated lattice structure the magnetic response is strongly enhanced in the vicinity of a nearly spherical surface in Q-space. We compare these results with recent low-temperature neutron scattering data. The measured spin relaxation rate \Gamma is used to estimate the spin fluctuation contribution to the specific heat.Comment: 26 pages, 6 figures, submitted to PR

    Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12

    Full text link
    Zero and longitudinal field muon spin rotation (muSR) experiments were performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc a spontaneous magnetization with a temperature variation resembling that of the superfluid density appears. This observation implies time-reversal symmetry (TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an anomalous superconductor and the weak and gradual change of Tc and of the related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12) suggests that the TRS breaking is due to orbital degrees of freedom of the Cooper pairs.Comment: To appear in Phys. Rev. B. 5 pages, 3 figure

    Cluster approach study of intersite electron correlations in pyrochlore and checkerboard lattices

    Full text link
    To treat effects of electron correlations in geometrically frustrated pyrochlore and checkerboard lattices, an extended single-orbital Hubbard model with nearest neighbor hopping ∼t\sim t and Coulomb repulsion ∼V\sim V is applied. Infinite on-site repulsion, U→∞U\to\infty, is assumed, thus double occupancies of sites are forbidden completely in the present study. A variational Gutzwiller type approach is extended to examine correlations due to short-range V−V-interaction and a cluster approximation is developed to evaluate a variational ground state energy of the system. Obtained analytically in a special case of quarter band filling appropriate to LiV2_2O4_4, the resulting simple expression describes the ground state energy in the regime of intermediate and strong coupling VV. Like in the Brinkman-Rice theory based on the standard Gutzwiller approach to the Hubbard model, the mean value of the kinetic energy is shown to be reduced strongly as the coupling VV approaches a critical value VcV_{c}. This finding may contribute to explaining the observed heavy fermion behavior in LiV2_2O4_4
    • …
    corecore