364 research outputs found

    Global three-parameter model for neutrino oscillations using Lorentz violation

    Get PDF
    A model of neutrino oscillations is presented that has only three degrees of freedom and is consistent with existing data. The model is a subset of the renormalizable sector of the Standard-Model Extension (SME), and it offers an alternative to the standard three-neutrino massive model. All classes of neutrino data are described, including solar, reactor, atmospheric, and LSND oscillations. The disappearance of solar neutrinos is obtained without matter-enhanced oscillations. Quantitative predictions are offered for the ongoing MiniBooNE experiment and for the future experiments OscSNS, NOvA, and T2K.Comment: 12 pages REVTe

    Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations

    Get PDF
    A recently developed Standard-Model Extension (SME) formalism for neutrino oscillations that includes Lorentz and CPT violation is used to analyze the sidereal time variation of the neutrino event excess measured by the Liquid Scintillator Neutrino Detector (LSND) experiment. The LSND experiment, performed at Los Alamos National Laboratory, observed an excess, consistent with neutrino oscillations, of νˉe{\bar\nu}_e in a beam of νˉμ{\bar\nu}_\mu. It is determined that the LSND oscillation signal is consistent with no sidereal variation. However, there are several combinations of SME coefficients that describe the LSND data; both with and without sidereal variations. The scale of Lorentz and CPT violation extracted from the LSND data is of order 10−1910^{-19} GeV for the SME coefficients aLa_L and E×cLE \times c_L. This solution for Lorentz and CPT violating neutrino oscillations may be tested by other short baseline neutrino oscillation experiments, such as the MiniBooNE experiment.Comment: 10 pages, 10 figures, 2 tables, uses revtex4 replaced with version to be published in Physical Review D, 11 pages, 11 figures, 2 tables, uses revtex

    Search for π0→νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu} Decay in LSND

    Get PDF
    We observe a net beam-excess of 8.7±6.38.7 \pm 6.3 (stat) ±2.4\pm 2.4 (syst) events, above 160 MeV, resulting from the charged-current reaction of νμ\nu_{\mu} and/or νˉμ\bar\nu_{\mu} on C and H in the LSND detector. No beam related muon background is expected in this energy regime. Within an analysis framework of π0→νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu}, we set a direct upper limit for this branching ratio of Γ(π0→νμνˉμ)/Γ(π0→all)<1.6×10−6\Gamma(\pi^0 \to \nu_\mu \bar\nu_\mu) / \Gamma(\pi^0 \to all) < 1.6 \times 10^{-6} at 90% confidence level.Comment: 4 pages, 4 figure
    • …
    corecore