3,773 research outputs found

    Unified pictures of Q-balls and Q-tubes

    Full text link
    While Q-balls have been investigated intensively for many years, another type of nontopological solutions, Q-tubes, have not been understood very well. In this paper we make a comparative study of Q-balls and Q-tubes. First, we investigate their equilibrium solutions for four types of potentials. We find, for example, that in some models the charge-energy relation is similar between Q-balls and Q-tubes while in other models the relation is quite different between them. To understand what determines the charge-energy relation, which is a key of stability of the equilibrium solutions, we establish an analytical method to obtain the two limit values of the energy and the charge. Our prescription indicates how the existent domain of solutions and their stability depends on their shape as well as potentials, which would also be useful for a future study of Q-objects in higher-dimensional spacetime.Comment: 11 pages, 14 figure

    Towards a spin foam model description of black hole entropy

    Full text link
    We propose a way to describe the origin of black hole entropy in the spin foam models of quantum gravity. This stimulates a new way to study the relation of spin foam models and loop quantum gravity.Comment: 5 pages, 1 figur

    Robust Unconditionally Secure Quantum Key Distribution with Two Nonorthogonal and Uninformative States

    Full text link
    We introduce a novel form of decoy-state technique to make the single-photon Bennett 1992 protocol robust against losses and noise of a communication channel. Two uninformative states are prepared by the transmitter in order to prevent the unambiguous state discrimination attack and improve the phase-error rate estimation. The presented method does not require strong reference pulses, additional electronics or extra detectors for its implementation.Comment: 7 pages, 2 figure

    Unconditionally Secure Key Distribution Based on Two Nonorthogonal States

    Full text link
    We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase errors are correlated after the filtering, and we can bound the amount of phase errors from the observed bit errors by an estimation method involving nonorthogonal measurements. The angle between the two states shows a trade-off between accuracy of the estimation and robustness to noises.Comment: 5 pages, 1 figur

    Simulation Subsumption or Déjà vu on the Web

    Get PDF
    Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms

    Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    Full text link
    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte

    Unconditional security of the Bennett 1992 quantum key-distribution scheme with strong reference pulse

    Full text link
    We prove the unconditional security of the original Bennett 1992 protocol with strong reference pulse. We show that we may place a projection onto suitably defined qubit spaces before the receiver, which makes the analysis as simple as qubit-based protocols. Unlike the single-photon-based qubits, the qubits identified in this scheme are almost surely detected by the receiver even after a lossy channel. This leads to the key generation rate that is proportional to the channel transmission rate for proper choices of experimental parameters.Comment: More detailed presentation and a bit modified security proo

    Black hole entropy for the general area spectrum

    Full text link
    We consider the possibility that the horizon area is expressed by the general area spectrum in loop quantum gravity and calculate the black hole entropy by counting the degrees of freedom in spin-network states related to its area. Although the general area spectrum has a complex expression, we succeeded in obtaining the result that the black hole entropy is proportional to its area as in previous works where the simplified area formula has been used. This gives new values for the Barbero-Immirzi parameter (γ=0.5802...or0.7847...\gamma =0.5802... \mathrm{or} 0.7847...) which are larger than that of previous works.Comment: 5 page

    Universality of Highly Damped Quasinormal Modes for Single Horizon Black Holes

    Full text link
    It has been suggested that the highly damped quasinormal modes of black holes provide information about the microscopic quantum gravitational states underlying black hole entropy. This interpretation requires the form of the highly damped quasinormal mode frequency to be universally of the form: ωR=ln(l)kTBH\hbar\omega_R = \ln(l)kT_{BH}, where ll is an integer, and TBHT_{BH} is the black hole temperature. We summarize the results of an analysis of the highly damped quasinormal modes for a large class of single horizon, asymptotically flat black holes.Comment: 9 pages, 1 figure, submitted to the proceedings of Theory CANADA 1, which will be published in a special edition of the Canadian Journal of Physic
    corecore