476 research outputs found

    Choreographic solution to the general relativistic three-body problem

    Get PDF
    We revisit the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and re-discovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general relativistic effects admit a choreographic solution such as the figure eight. We carefully examine general relativistic corrections to initial conditions so that an orbit for a three-body system can be closed and a figure eight. This solution is still choreographic. This illustration suggests that the general relativistic N-body problem also may admit a certain class of choreographic solutions.Comment: 10 pages, 4 figures, text improved, accepted for publication in PR

    Polar Patrol Balloon experiment in Antarctica during 2002-2003

    Get PDF
    The first scientific campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was performed at Syowa Station in Antarctica during 1990-1991 and 1992-1993. Based on the fruitful results of the 1st-PPB experiment, the next campaign (2nd-PPB) will be carried out in the austral summer of 2002-2003. This paper summarizes the 2nd-PPB experiment. Four balloons in total will be launched to make astrophysics observations (1 balloon) and upper atmosphere physics observations (3 balloons). The first payload will carry a very sophisticated instrument that will observe primary cosmic-ray electrons in the energy range of 10 GeV - 1 TeV. The payloads of the latter 3 flights are identical to each other. They will be launched in as rapid a succession as weather conditions permit to form a cluster of balloons during their flights. Such a "Balloon Cluster" is suitable for observing the temporal evolution and spatial distribution of various phenomena in the various magnetospheric and ionospheric regions and their boundaries that the balloons will traverse during their circumpolar trajectory. The expected flight duration of each balloon is 20 days. Observation data will be obtained mainly by a satellite communication system with a much higher temporal resolution than that used in the 1st-PPB experiment

    Immune mechanisms in the different phases of acute tubular necrosis

    Get PDF
    Acute kidney injury is a clinical syndrome that can be caused by numerous diseases including acute tubular necrosis (ATN). ATN evolves in several phases, all of which are accompanied by different immune mechanisms as an integral component of the disease process. In the early injury phase, regulated necrosis, damage-associated molecular patterns, danger sensing, and neutrophil-driven sterile inflammation enhance each other and contribute to the crescendo of necroinflammation and tissue injury. In the late injury phase, renal dysfunction becomes clinically apparent, and M1 macrophage-driven sterile inflammation contributes to ongoing necroinflammation and renal dysfunction. In the recovery phase, M2-macrophages and anti-inflammatory mediators counteract the inflammatory process, and compensatory remnant nephron and cell hypertrophy promote an early functional recovery of renal function, while some tubules are still badly injured and necrotic material is removed by phagocytes. The resolution of inflammation is required to promote the intrinsic regenerative capacity of tubules to replace at least some of the necrotic cells. Several immune mechanisms support this wound-healing-like re-epithelialization process. Similar to wound healing, this response is associated with mesenchymal healing, with a profound immune cell contribution in terms of collagen production and secretion of pro-fibrotic mediators. These and numerous other factors determine whether, in the chronic phase, persistent loss of nephrons and hyperfunction of remnant nephrons will result in stable renal function or progress to decline of renal function such as progressive chronic kidney disease

    Differences in serum IL-6 response after 1°C rise in core body temperature in individuals with spinal cord injury and cervical spinal cord injury during local heat stress

    Get PDF
    Objectives: Passive rise in core body temperature achieved by head-out hot water immersion (HHWI) results in acute increases in serum interleukin (IL)-6 but no change in plasma adrenaline in patients with cervical spinal cord injury (CSCI). The purpose of the present study was to determine the mechanism of heat stress-induced increase in serum IL-6. Setting: A cross-sectional study. Methods: The study subjects were 9 with CSCI, 10 with thoracic and lumbar spinal cord injury (TLSCI) and 8 able-bodied (AB) subjects. Time since injury was 16.4±4.1 years in TLSCI and 16.1±3.4 years in CSCI. Subjects were subjected to lower-body heat stress (LBH) by wearing a hot water-perfused suit until 1°C increase in core temperature. The levels of serum IL-6, plasma adrenaline, tumor necrosis factor (TNF)-α, C-reactive protein (CRP), and counts of blood cells were measured at normothermia and after LBH. Results: Serum IL-6 concentrations increased significantly immediately after LBH in all the three groups. ΔIL-6% was lower in CSCI subjects compared with AB subjects. Plasma adrenaline concentrations significantly increased after LBH in AB and TLSCI subjects, but did not change throughout the study in CSCI subjects. Cardiac output and heart rate increased at the end of LBH in all three groups. Conclusion: Under a similar increase in core temperature, ΔIL-6% was lower in the CSCI group compared with the AB group. These findings suggest that the observed rise in IL-6 during hyperthermia is mediated, at least in part, by plasma adrenaline

    Direct observation of quasi-particle band in CeIrIn5_5: Angle-resolved photoemission spectroscopy study

    Get PDF
    We have performed a high-resolution angle resolved Ce 4d4fd-4f resonant photoemission experiment on the heavy fermion superconductor CeIrIn5_5. We have observed a quasi-particle band which has an energy dispersion of 30\sim 30 meV in the Ce 4ff on-resonance spectra. The result suggests that although the 4ff spectra are dominated by the localized/correlated character, the small itinerant component is responsible for the superconductivity in this compound.Comment: 5 pages, 3 figure

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer

    Get PDF
    We report cosmic-ray proton and helium spectra in energy ranges of 1 to 120 GeV and 1 to 54 GeV/nucleon, respectively, measured by a balloon flight of the BESS spectrometer in 1998. The magnetic-rigidity of the cosmic-rays was reliably determined by highly precise measurement of the circular track in a uniform solenoidal magnetic field of 1 Tesla. Those spectra were determined within overall uncertainties of +-5 % for protons and +- 10 % for helium nuclei including statistical and systematic errors.Comment: 12 pages, 4 figure

    Genome of the pitcher plant <i>Cephalotus </i>reveals genetic changes associated with carnivory

    Get PDF
    Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory
    corecore