47 research outputs found

    Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae.

    Get PDF
    Background:High rates of antimicrobial resistance (AMR) in Neisseria gonorrhoeae hinder effective treatment, but molecular AMR diagnostics may help address the challenge. This study aimed to appraise the literature for resistance-associated genotypic markers linked to fluoroquinolones and macrolides, to identify and review their use in diagnostics. Methods: Medline and EMBASE databases were searched and data pooled to evaluate associations between genotype and phenotypic resistance. The minimum inhibitory concentration (MIC) cut-offs were ≤ 0.06 mg L-1 for non-resistance to ciprofloxacin and ≤ 0.5 mg L-1 for non-resistance to azithromycin. Results: Diagnostic accuracy estimates were limited by data availability and reporting. It was found that: 1) S91 and D95 mutations in the GyrA protein independently predicted ciprofloxacin resistance and, used together, gave 98.6% (95% confidence interval (CI) 98.0-99.0%) sensitivity and 91.4% (95%CI 88.6-93.7%) specificity; 2) the number of 23S rRNA gene alleles with C2611T or A2059G mutations was highly correlated with azithromycin resistance, with mutation in any allele giving a sensitivity and specificity of 66.1% (95%CI 62.1-70.0%) and 98.9% (95%CI 97.5-99.5%) respectively. Estimated negative (NPV) and positive predictive values (PPV) for a 23S rRNA diagnostic were 98.6% (95%CI 96.8-99.4%) and 71.5% (95%CI 68.0-74.8%) respectively; 3) mutation at amino acid position G45 in the MtrR protein independently predicted azithromycin resistance; however, when combined with 23S rRNA, did not improve the PPV or NPV. Conclusions: Viable candidates for markers of resistance detection for incorporation into diagnostics were demonstrated. Such tests may enhance antibiotic stewardship and treatment options

    Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain

    Get PDF
    BACKGROUND: Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. RESULTS: In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. CONCLUSIONS: Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61
    corecore