1,391 research outputs found

    Partial Coherence Estimation via Spectral Matrix Shrinkage under Quadratic Loss

    Get PDF
    Partial coherence is an important quantity derived from spectral or precision matrices and is used in seismology, meteorology, oceanography, neuroscience and elsewhere. If the number of complex degrees of freedom only slightly exceeds the dimension of the multivariate stationary time series, spectral matrices are poorly conditioned and shrinkage techniques suggest themselves. When true partial coherencies are quite large then for shrinkage estimators of the diagonal weighting kind it is shown empirically that the minimization of risk using quadratic loss (QL) leads to oracle partial coherence estimators superior to those derived by minimizing risk using Hilbert-Schmidt (HS) loss. When true partial coherencies are small the methods behave similarly. We derive two new QL estimators for spectral matrices, and new QL and HS estimators for precision matrices. In addition for the full estimation (non-oracle) case where certain trace expressions must also be estimated, we examine the behaviour of three different QL estimators, the precision matrix one seeming particularly robust and reliable. For the empirical study we carry out exact simulations derived from real EEG data for two individuals, one having large, and the other small, partial coherencies. This ensures our study covers cases of real-world relevance

    Random Matrix Derived Shrinkage of Spectral Precision Matrices

    Full text link
    Much research has been carried out on shrinkage methods for real-valued covariance matrices. In spectral analysis of pp-vector-valued time series there is often a need for good shrinkage methods too, most notably when the complex-valued spectral matrix is singular. The equivalent of the Ledoit-Wolf (LW) covariance matrix estimator for spectral matrices can be improved on using a Rao-Blackwell estimator, and using random matrix theory we derive its form. Such estimators can be used to better estimate inverse spectral (precision) matrices too, and a random matrix method has previously been proposed and implemented via extensive simulations. We describe the method, but carry out computations entirely analytically, and suggest a way of selecting an important parameter using a predictive risk approach. We show that both the Rao-Blackwell estimator and the random matrix estimator of the precision matrix can substantially outperform the inverse of the LW estimator in a time series setting. Our new methodology is applied to EEG-derived time series data where it is seen to work well and deliver substantial improvements for precision matrix estimation

    Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts

    Full text link
    The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has been determined for the first time in the Gamow energy region for peak temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review Letter
    corecore