25,974 research outputs found

    Orbital roulette: a new method of gravity estimation from observed motions

    Full text link
    The traditional way of estimating the gravitational field from observed motions of test objects is based on the virial relation between their kinetic and potential energy. We find a more efficient method. It is based on the natural presumption that the objects are observed at a random moment of time and therefore have random orbital time phases. The proposed estimator, which we call "orbital roulette", checks the randomness of the phases. The method has the following advantages: (1) It estimates accurately Keplerian (point-mass) potentials as well as non-Keplerian potentials where the unknown gravitating mass is distributed in space. (2) It is a complete statistical estimator: it checks a trial potential and accepts it or rules it out with a certain significance level; the best-fit measurement is thus supplemented with error bars at any confidence level. (3) It needs no a priori assumptions about the distribution of orbital parameters of the test bodies. We test our estimator with Monte-Carlo-generated motions and demonstrate its efficiency. Useful applications include the Galactic Center, dark-matter halo of the Galaxy, and clusters of stars or galaxies.Comment: 30 pages, accepted to Ap

    Mechanism of droplet-formation in a supersonic microfluidic spray device

    Get PDF
    Spray drying is an approach employed in automotive, food, and pharmaceutical industries as a robust and cost efficient liquid atomization technique offering direct control over droplet dimensions. The majority of commercially available spray nozzles are designed for large throughput spray drying applications or uniform surface coating, but microfluidic nebulizers have recently been developed as small scale alternatives. Here, we explore the physical parameters that define the droplet size and formation under supersonic flow conditions commonly found in microfluidic spray drying systems. We examined the spray nozzle operation using high speed imaging and laser scattering measurements, which allowed us to describe the spray regimes and droplet size distributions. It was determined that by using this spray nozzle device, droplets with diameters of 4–8 μm could be generated. Moreover, we show that the supersonic de Laval nozzle model can be used to predict the average droplet size. Our approach can be used as a platform for interfacing fluid microprocessing with gas phase detection and characterization

    Real inequality in Europe since 1500

    Get PDF
    Introducing a concept of real, as opposed to nominal, inequality of income or wealth suggests some historical reinterpretations, buttressed by a closer look at consumption by the rich. The purchasing powers of different income classes depend on how relative prices move. Relative prices affected real inequality more strongly in earlier centuries than in the twentieth. Between 1500 and about 1800, staple food and fuels became dearer, while luxury goods, especially servants, became cheaper, greatly widening the inequality of lifestyles. Peace, industrialization, and globalization reversed this inegalitarian price effect in the nineteenth century, at least for England

    Exact asymptotic expansions for the cylindrical Poisson-Boltzmann equation

    Full text link
    The mathematical theory of integrable Painleve/Toda type systems sheds new light on the behavior of solutions to the Poisson-Boltzmann equation for the potential due to a long rod-like macroion. We investigate here the case of symmetric electrolytes together with that of 1:2 and 2:1 salts. Short and large scale features are analyzed, with a particular emphasis on the low salinity regime. Analytical expansions are derived for several quantities relevant for polyelectrolytes theory, such as the Manning radius. In addition, accurate and practical expressions are worked out for the electrostatic potential, which improve upon previous work and cover the full range of radial distances

    Chaos and Order in Models of Black Hole Pairs

    Get PDF
    Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that in three different approximations to a black hole pair built of a spinning black hole and a non-spinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test-mass around a Schwarzschild black hole shows chaos, as does the Post-Newtonian Lagrangian approximation. However, the approximately equivalent Post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However,the physical question remains, Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the Post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime

    Resolvent convergence of Sturm-Liouville operators with singular potentials

    Full text link
    In this paper we consider the Sturm-Liuoville operator in the Hilbert space L2L_2 with the singular complex potential of W21W^{-1}_2 and two-point boundary conditions. For this operator we give sufficient conditions for norm resolvent approximation by the operators of the same class.Comment: 6 pages, to appear in Math. Note
    corecore