58 research outputs found

    2,4,8,10,13-Penta­methyl-6-phenyl-13,14-dihydro-12H-6λ5-dibenzo[d,i][1,3,7,2]dioxaza­phosphecin-6-thione

    Get PDF
    In the title compound, C25H28NO2PS, the cyclo­decene ring exhibits a crown conformation. The two dimethyl­benzene rings which are fused symmetrically on either side of the ten-membered ring, make dihedral angles of 20.2 (1) and 18.0 (1)°. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of 88.4 (1)°. The crystal structure is stabilized by very weak intra­molecular C—H⋯O hydrogen bonding

    Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities

    Get PDF
    © 2020, The Author(s). In Jordan, Salvia ceratophylla L. is traditionally used in the treatment of cancer, microbial infections, and urinary disorders. This study aimed: (1) to chemically characterize S. ceratophylla essential oil (EO) from South Jordan, by gas chromatography (GC) and gas chromatography-mass spectrometry (GC–MS); and (2) to evaluate in vitro the cytotoxic, anti-inflammatory, and antiprotozoal activities of the EO, it’s predominant components, and the hexane (A), ethyl acetate (B), methanol (C) and crude-methanol extracts (D). The analysis revealed that the EO has 71 compounds, with linalool (54.8%) as main constituent. Only the hexane extract (A) showed some cytotoxic activity against SK-MEL, KB, BT-549, SK-OV-3, LLC-PK1 and VERO cells lines with IC50 between 60 and \u3e 100 µg/mL. The EO inhibited NO production (IC50 90 µg/mL) and NF-κB activity (IC50 38 µg/mL). The extracts A, B, and D inhibited NO production and NF- κB activity with IC50 between 32 and 150 µg/mL. Linalool considerably inhibited NO production (IC50 18 µg/mL). The extracts tested did not exhibit antileishmanial activity. Regarding antitrypanosomal activity, the EO exhibited significant results with IC50 2.65 µg/mL. In conclusion, Jordan S. ceratophylla EO represents a rich source of linalool and bears a promising therapeutic potential for further antitrypanosomal drug development

    Tetraazamacrocyclic derivatives and their metal complexes as antileishmanial leads

    Get PDF
    © 2019 A total of 44 bis-aryl-monocyclic polyamines, monoaryl-monocyclic polyamines and their transition metal complexes were prepared, chemically characterized, and screened in vitro against the Leishmania donovani promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells. The IC 50 and/or IC 90 values showed that 10 compounds were similarly active at about 2-fold less potent than known drug pentamidine against promastigotes. The most potent compound had an IC 50 of 2.82 µM (compared to 2.93 µM for pentamidine). Nine compounds were 1.1–13.6-fold more potent than pentamidine against axenic amastigotes, the most potent one being about 2-fold less potent than amphotericin B. Fourteen compounds were about 2–10 fold more potent than pentamidine, the most potent one is about 2-fold less potent than amphotericin B against intracellular amastigotes in THP1 cells. The 2 most promising compounds (FeL7Cl 2 and MnL7Cl 2 ), with strong activity against both promastigotes and amastigotes and no observable toxicity against the THP1 cells are the Fe 2+ - and Mn 2+ -complexes of a dibenzyl cyclen derivative. Only 2 of the 44 compounds showed observable cytotoxicity against THP1 cells. Tetraazamacrocyclic monocyclic polyamines represent a new class of antileishmanial lead structures that warrant follow up studies

    Effect of starch isolation method on properties of sweet potato starch

    No full text
    Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1), Sodium chloride (M2), and Distilled water (M3) methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%). Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch
    corecore